	[bookmark: _Hlk87965317][image: ]
	[image: ]
	OPC UA Companion Specification

	OPC 40563-4
	

	
OPC UA for Mining - Transport Dumping
Part 4: Conveying


Working Draft 1.0
2025-10-01
OPC 40563-4 (Working Draft 1.0) is identical with VDMA 40563-4:2025-10 

	











[bookmark: CoverPage3rdParty]
Contents

Page
Forewords	8
1	Scope	9
2	Normative references	9
3	Terms, definitions and conventions	11
3.1	Overview	11
3.2	OPC UA for <title> terms	11
3.3	Abbreviated terms	11
3.4	Conventions used in this document	11
3.4.1	Conventions for Node descriptions	11
3.4.2	NodeIds and BrowseNames	14
3.4.3	Common Attributes	15
3.4.4	Structures	16
4	General information to <title> and OPC UA	19
4.1	Introduction to <title>	19
4.2	Introduction to OPC Unified Architecture	19
4.2.1	What is OPC UA?	19
4.2.2	Basics of OPC UA	19
4.2.3	Information modelling in OPC UA	20
5	Use cases	24
6	<title> Information Model overview	24
7	OPC UA ObjectTypes	24
7.1	BeltConveyorType ObjectType Definition	24
7.1.1	Overview	24
7.2	DriveControllerType ObjectType Definition	26
7.2.1	Overview	26
7.2.2	ConveyorStart	26
7.2.3	ConveyorStop	27
7.2.4	CloseBreak	27
7.2.5	OpenBreak	28
7.3	ConveyorDriveType ObjectType Definition	28
7.3.1	Overview	28
7.4	ConveyorBrakeType ObjectType Definition	31
7.4.1	Overview	31
7.5	BeltType ObjectType Definition	32
7.5.1	Overview	32
7.6	BeltSectionType ObjectType Definition	33
7.6.1	Overview	33
7.7	BeltSpliceType ObjectType Definition	34
7.7.1	Overview	34
7.8	PulleyType ObjectType Definition	35
7.8.1	Overview	35
7.9	WeatherStationType ObjectType Definition	36
7.9.1	Overview	36
7.10	ScraperType ObjectType Definition	37
7.10.1	Overview	37
7.11	ConveyorRollType ObjectType Definition	38
7.11.1	Overview	38
8	Profiles and ConformanceUnits	39
9	Namespaces	39
9.1	Namespace Metadata	39
9.2	Handling of OPC UA Namespaces	39
Annex A (normative)  <Title> Namespace and mappings	41



Figures

Figure 1 – The Scope of OPC UA within an Enterprise	20
Figure 2 – A Basic Object in an OPC UA Address Space	21
Figure 3 – The Relationship between Type Definitions and Instances	22
Figure 4 – Examples of References between Objects	23
Figure 5 – The OPC UA Information Model Notation	23



Tables

Table 1 – Examples of DataTypes	12
Table 2 – Type Definition Table	13
Table 3 – Examples of Other Characteristics	13
Table 4 – <some> Additional References	13
Table 5 – <some>Type Additional Subcomponents	14
Table 6 – <some>Type Attribute values for child nodes	14
Table 7 – Common Node Attributes	15
Table 8 – Common Object Attributes	15
Table 9 – Common Variable Attributes	16
Table 10 – Common VariableType Attributes	16
Table 11 – Common Method Attributes	16
Table 12 – Structures without optional fields where none of the fields allow subtypes	16
Table 13 – Structures with optional fields	17
Table 14 – Structures where one or more of the fields allow subtypes	17
Table 41 – NamespaceMetadata Object for this Document	39
Table 42 – Namespaces used in a <title> Server	40
Table 43 – Namespaces used in this document	40


Seite 4
Entwurf VDMA xxxxx:JJJJ-MM


Page 20
OPC 40563-4: OPC UA for Mining - Conveying	Working Draft 1.0
Page 19
[bookmark: CoverPageOPC]Working Draft 1.0	OPC 40563-4: OPC UA for Mining - Conveying




OPC Foundation / VDMA
____________
[bookmark: _Toc138504167][bookmark: _Toc139710827][bookmark: _Hlk17449117]AGREEMENT OF USE
COPYRIGHT RESTRICTIONS
· This document is provided "as is" by the OPC Foundation and VDMA.
· Right of use for this specification is restricted to this specification and does not grant rights of use for referred documents.
· Right of use for this specification will be granted without cost.
· This document may be distributed through computer systems, printed or copied as long as the content remains unchanged and the document is not modified.
· OPC Foundation and VDMA do not guarantee usability for any purpose and shall not be made liable for any case using the content of this document.
· The user of the document agrees to indemnify OPC Foundation and VDMA and their officers, directors and agents harmless from all demands, claims, actions, losses, damages (including damages from personal injuries), costs and expenses (including attorneys' fees) which are in any way related to activities associated with its use of content from this specification.
· The document shall not be used in conjunction with company advertising, shall not be sold or licensed to any party.
· The intellectual property and copyright is solely owned by the OPC Foundation and VDMA.

PATENTS
The attention of adopters is directed to the possibility that compliance with or adoption of OPC or VDMA specifications may require use of an invention covered by patent rights. OPC Foundation or VDMA shall not be responsible for identifying patents for which a license may be required by any OPC or VDMA specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. OPC or VDMA specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.
WARRANTY AND LIABILITY DISCLAIMERS
WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OPC FOUDATION NOR VDMA MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OPC FOUNDATION NOR VDMA BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
The entire risk as to the quality and performance of software developed using this specification is borne by you. 
RESTRICTED RIGHTS LEGEND
This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation, 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830
COMPLIANCE
The combination of VDMA and OPC Foundation shall at all times be the sole entities that may authorize developers, suppliers and sellers of hardware and software to use certification marks, trademarks or other special designations to indicate compliance with these materials as specified within this document. Products developed using this specification may claim compliance or conformance with this specification if and only if the software satisfactorily meets the certification requirements set by VDMA or the OPC Foundation. Products that do not meet these requirements may claim only that the product was based on this specification and must not claim compliance or conformance with this specification.
TRADEMARKS
Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not been listed here.
GENERAL PROVISIONS
Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and enforceability of the other provisions shall not be affected thereby. 
This Agreement shall be governed by and construed under the laws of Germany.
This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING
If an error or problem is found in this specification, the UaNodeSet, or any associated supplementary files, it should be reported as an issue.
The reporting process can be found here: https://opcfoundation.org/resources/issue-tracking/ 
The Link to the issue tracking project for this document is here:
https://mantis.opcfoundation.org/set_project.php?project_id=<nnn>&make_default=no 
<nnn> is the project_id in Mantis which is created for any document when requested by the working group. Example: https://mantis.opcfoundation.org/set_project.php?project_id=142&make_default=no is the Link for OPC 40001-* (Machinery).

If you have no Mantis Project or do not know the project_id, please send a request to TechnicalDirector@opcfoundation.org.


[bookmark: _Toc65744305][bookmark: _Toc88555483][bookmark: _Toc194572919]Forewords
Compared with the previous versions, the following changes have been made:
	Version
	Changes

	1.0.0
	Initial Release

	
	



OPC UA is a machine to machine communication technology to transmit characteristics of products (e.g. manufacturer name, device type or components) and process data (e.g. temperatures, pressures or feed rates). To enable vendor unspecific interoperability the description of product characteristics and process data has to be standardized utilizing technical specifications, the OPC UA companion specifications.
This specification was created by a joint working group of the OPC Foundation and VDMA Mining.

OPC Foundation
OPC is the interoperability standard for the secure and reliable exchange of data and information in the industrial automation space and in other industries. It is platform independent and ensures the seamless flow of information among devices from multiple vendors. The OPC Foundation is responsible for the development and maintenance of this standard.
OPC UA is a platform independent service-oriented architecture that integrates all the functionality of the individual OPC Classic specifications into one extensible framework. This multi-layered approach accomplishes the original design specification goals of:
Platform independence: from an embedded microcontroller to cloud-based infrastructure
Secure: encryption, authentication, authorization and auditing
Extensible: ability to add new features including transports without affecting existing applications
Comprehensive information modelling capabilities: for defining any model from simple to complex

VDMA Mining 
The VDMA represents over 3,200 mainly small and medium size member companies in the engineering industry, making it one of the largest and most important industrial associations in Europe. With an export quota amounting to 96 per cent, mining technology is one of the most export-oriented branches of the German engineering industry. VDMA Mining represents well-known, mainly medium-sized companies from the sectors open cast mining/materials handling, underground mining, mining processing technology and consulting, research and development. 145 companies merged in VDMA Mining representing more than 90 per cent of the entire trade volume.

[bookmark: _Toc502913900][bookmark: _Toc65744306][bookmark: _Toc88555064][bookmark: _Toc88555390][bookmark: _Toc88555484]
MAIN TITLE IN CAPITAL LETTERS –

Part X: Second part of the title in normal letters 

[bookmark: _Toc194572920]Scope
This document XXXXX specifies / establishes / ...
<Specify what this specification covers. Look into other companion specs for examples.>

[bookmark: _Toc310508218][bookmark: _Toc459116286][bookmark: _Toc502913903][bookmark: _Toc65744307][bookmark: _Toc88555065][bookmark: _Toc88555391][bookmark: _Toc88555485][bookmark: _Toc194572921]Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments and errata) applies
There are no normative references in this document.
[bookmark: UAPart1]
OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts
http://www.opcfoundation.org/documents/10000-1/
[bookmark: UAPart2]OPC 10000-2, OPC Unified Architecture - Part 2: Security Model
http://www.opcfoundation.org/documents/10000-2/
[bookmark: UAPart3]OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model
http://www.opcfoundation.org/documents/10000-3/
[bookmark: UAPart4]OPC 10000-4, OPC Unified Architecture - Part 4: Services
http://www.opcfoundation.org/documents/10000-4/
[bookmark: UAPart5]OPC 10000-5, OPC Unified Architecture - Part 5: Information Model
http://www.opcfoundation.org/documents/10000-5/
[bookmark: UAPart6]OPC 10000-6, OPC Unified Architecture - Part 6: Mappings
http://www.opcfoundation.org/documents/10000-6/
[bookmark: UAPart7]OPC 10000-7, OPC Unified Architecture - Part 7: Profiles
http://www.opcfoundation.org/documents/10000-7/
[bookmark: UAPart8]OPC 10000-8, OPC Unified Architecture - Part 8: Data Access
http://www.opcfoundation.org/documents/10000-8/
[bookmark: UAPart9]OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and Conditions
http://www.opcfoundation.org/documents/10000-9/
[bookmark: UAPart10]OPC 10000-10, OPC Unified Architecture - Part 10: Programs
http://www.opcfoundation.org/documents/10000-10/
[bookmark: UAPart11]OPC 10000-11, OPC Unified Architecture - Part 11: Historical Access
http://www.opcfoundation.org/documents/10000-11/
[bookmark: UAPart12]OPC 10000-12, OPC Unified Architecture - Part 12: Discovery and Global Services
http://www.opcfoundation.org/documents/10000-12/
[bookmark: UAPart13]OPC 10000-13, OPC Unified Architecture - Part 13: Aggregates
http://www.opcfoundation.org/documents/10000-13/
[bookmark: UAPart14]OPC 10000-14, OPC Unified Architecture - Part 14: PubSub
http://www.opcfoundation.org/documents/10000-14/ 
[bookmark: Part15]OPC 10000-15, OPC Unified Architecture - Part 15: Safety
http://www.opcfoundation.org/documents/10000-15/ 
[bookmark: Part16]OPC 10000-16, OPC Unified Architecture - Part 16: State Machines
http://www.opcfoundation.org/documents/10000-16/ 
[bookmark: Part17]OPC 10000-17, OPC Unified Architecture - Part 17: Alias Names
http://www.opcfoundation.org/documents/10000-17/ 
[bookmark: Part18]OPC 10000-18, OPC Unified Architecture - Part 18: Role-Based Security
http://www.opcfoundation.org/documents/10000-18/ 
[bookmark: Part19]OPC 10000-19, OPC Unified Architecture - Part 19: Dictionary References
http://www.opcfoundation.org/documents/10000-19/ 
[bookmark: Part20]OPC 10000-20, OPC Unified Architecture - Part 20: File Transfer
http://www.opcfoundation.org/documents/10000-20/ 
[bookmark: Part22]OPC 10000-22, OPC Unified Architecture - Part 22: Base Network Model
http://www.opcfoundation.org/documents/10000-22/ 
[bookmark: UAPart100]OPC 10000-100, OPC Unified Architecture - Part 100: Devices
http://www.opcfoundation.org/documents/10000-100/
[bookmark: Part110]OPC 10000-110, OPC Unified Architecture - Part 110: Asset Management Basics
http://www.opcfoundation.org/documents/10000-110/
[bookmark: Part200]OPC 10000-200, OPC Unified Architecture - Part 200: Industrial Automation
http://www.opcfoundation.org/documents/10000-200/


Examples for references to other companion specifications
OPC 40001-1, OPC UA for Machinery - Part 1: Basic Building Blocks
http://www.opcfoundation.org/documents/40001-1/
OPC 10031-4, OPC UA for ISA-95 – Part 4: Job Control
http://www.opcfoundation.org/documents/10031-4/

[bookmark: _Toc310508219][bookmark: _Toc459116287][bookmark: _Toc502913904][bookmark: _Toc65744308][bookmark: _Toc88555066][bookmark: _Toc88555392][bookmark: _Toc88555486][bookmark: _Toc194572922]Terms, definitions and conventions
[bookmark: _Ref322438541][bookmark: _Toc349863202][bookmark: _Toc464635416][bookmark: _Toc463790994][bookmark: _Toc500431939][bookmark: _Toc502913905][bookmark: _Toc65744309][bookmark: _Toc88555067][bookmark: _Toc88555393][bookmark: _Toc88555487][bookmark: _Toc194572923][bookmark: _Toc304364485][bookmark: _Toc316874795][bookmark: _Toc316875860][bookmark: _Toc316879123][bookmark: _Toc324308702][bookmark: _Toc324319605][bookmark: _Toc348408901][bookmark: _Toc353623095][bookmark: _Toc353625639][bookmark: _Toc353769651][bookmark: _Toc353849060][bookmark: _Toc353856183][bookmark: _Toc353857927][bookmark: _Toc354749994][bookmark: _Toc354876834][bookmark: _Toc354903787][bookmark: _Toc354906184][bookmark: _Toc356282158][bookmark: _Toc356283899][bookmark: _Toc356284367][bookmark: _Toc371907080][bookmark: _Toc372009766][bookmark: _Toc372010995][bookmark: _Toc415626624][bookmark: _Toc472851834][bookmark: _Toc520863915][bookmark: _Toc1534166][bookmark: _Toc68936403][bookmark: _Toc81641484][bookmark: _Toc96403601][bookmark: _Toc200966356][bookmark: _Toc200980065][bookmark: _Toc200983172][bookmark: _Toc202694687][bookmark: _Toc202698706][bookmark: _Toc221766556][bookmark: _Toc221785702][bookmark: _Toc288045459][bookmark: _Toc293994196][bookmark: _Toc286599562][bookmark: _Toc472851840][bookmark: _Toc520863921]Overview
It is assumed that basic concepts of OPC UA information modelling and <other specifications> are understood in this specification. This specification will use these concepts to describe the <title> Information Model. For the purposes of this document, the terms and definitions given in OPC 10000-1, OPC 10000-3, OPC 10000-4, OPC 10000-5, OPC 10000-7, OPC 10000-100, …  as well as the following apply. 
Note that OPC UA terms and terms defined in this specification are italicized in the specification.

[bookmark: _Toc288045462][bookmark: _Toc293994199][bookmark: _Toc349863207][bookmark: _Toc464635421][bookmark: _Toc463790999][bookmark: _Toc500431940][bookmark: _Toc502913906][bookmark: _Toc65744310][bookmark: _Toc88555068][bookmark: _Toc88555394][bookmark: _Toc88555488][bookmark: _Toc194572924][bookmark: _Toc96403605]OPC UA for <title> terms
[bookmark: _Toc320884064][bookmark: _Toc320884065][bookmark: _Toc320884067][bookmark: _Toc320884071][bookmark: _Toc320884075]The following terms (1 and 2) are examples. They have the IEC format for term definitions.
4.2.1
term 1
<a short description – max two lines>
Note 1 to entry: Optional additional text if the short description is not considered sufficient.
EXAMPLE 1 First example for term 1.
EXAMPLE 2 Second example for term 1.
[SOURCE: where definition 1 was found]

4.2.2
term 2
definition 2

[bookmark: _Toc18148648][bookmark: _Toc65744311][bookmark: _Toc88555069][bookmark: _Toc88555395][bookmark: _Toc88555489][bookmark: _Toc194572925]Abbreviated terms
The following abbreviations are examples. The list shall only contain abbreviations used in the document.
AC	Alarm and Condition
DCS	Distributed Control Systems
ERP	Enterprise Resource Planning
HMI	Human Machine Interface
HTTP	Hypertext Transfer Protocol
IP	Internet Protocol
MES	Manufacturing Execution System
PLC	Programable Logical Controller
PMS	Production Management System
TCP	Transmission Control Protocol
UML	Unified Modelling Language
URI	Uniform Resource Identifier
XML	Extensible Markup Language

[bookmark: _Toc442691839][bookmark: _Ref495482947][bookmark: _Toc500431942][bookmark: _Toc502913908][bookmark: _Toc65744312][bookmark: _Toc88555070][bookmark: _Toc88555396][bookmark: _Toc88555490][bookmark: _Toc194572926]Conventions used in this document
Following are basic conventions that shall be followed for all formal definitions used.
[bookmark: _Toc442691840][bookmark: _Toc500431943][bookmark: _Toc65744313][bookmark: _Toc88555071][bookmark: _Toc88555397][bookmark: _Toc88555491][bookmark: _Toc194572927]Conventions for Node descriptions
[bookmark: _Ref88549958]Node definitions
Node definitions are specified using tables (see Table 2).
Attributes are defined by providing the Attribute name and a value, or a description of the value.
References are defined by providing the ReferenceType name, the BrowseName of the TargetNode and its NodeClass.
If the TargetNode is a component of the Node being defined in the table the Attributes of the composed Node are defined in the same row of the table. 
The DataType is only specified for Variables; “[<number>]” indicates a single-dimensional array, for multi-dimensional arrays the expression is repeated for each dimension (e.g. [2][3] for a two-dimensional array). For all arrays the ArrayDimensions is set as identified by <number> values. If no <number> is set, the corresponding dimension is set to 0, indicating an unknown size. If no number is provided at all the ArrayDimensions can be omitted. If no brackets are provided, it identifies a scalar DataType and the ValueRank is set to the corresponding value (see OPC 10000-3). In addition, ArrayDimensions is set to null or is omitted. If it can be Any or ScalarOrOneDimension, the value is put into “{<value>}”, so either “{Any}” or “{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value (see OPC 10000-3) and the ArrayDimensions is set to null or is omitted. Examples are given in Table 1.
[bookmark: _Ref17363919][bookmark: _Ref499807960][bookmark: _Toc265516742][bookmark: _Toc332195658][bookmark: _Toc499116097][bookmark: _Toc17459974][bookmark: _Toc194403813]Table 1 – Examples of DataTypes
	Notation
	DataType
	ValueRank
	ArrayDimensions
	Description

	0:Int32
	0:Int32
	-1
	omitted or null
	A scalar Int32.

	0:Int32{OneOrMoreDimensions}
	0:Int32
	0
	omitted or null
	The Int32 value is an array with one or more dimensions.

	0:Int32[]
	0:Int32
	1
	omitted or {0}
	Single-dimensional array of Int32 with an unknown size.

	0:Int32[][]
	0:Int32
	2
	omitted or {0,0}
	Two-dimensional array of Int32 with unknown sizes for both dimensions.

	0:Int32[3][]
	0:Int32
	2
	{3,0}
	Two-dimensional array of Int32 with a size of 3 for the first dimension and an unknown size for the second dimension.

	0:Int32[5][3]
	0:Int32
	2
	{5,3}
	Two-dimensional array of Int32 with a size of 5 for the first dimension and a size of 3 for the second dimension.

	0:Int32{Any}
	0:Int32
	-2
	omitted or null
	An Int32 where it is unknown if it is scalar or array with any number of dimensions.

	0:Int32{ScalarOrOneDimension}
	0:Int32
	-3
	omitted or null
	An Int32 where it is either a single-dimensional array or a scalar.



The TypeDefinition is specified for Objects and Variables.
The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified Node points with a HasTypeDefinition Reference to the corresponding Node.
The ModellingRule of the referenced component is provided by specifying the symbolic name of the rule in the ModellingRule column. In the AddressSpace, the Node shall use a HasModellingRule Reference to point to the corresponding ModellingRule Object.
If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType shall be used.
Note that if a symbolic name of a different namespace is used, it is prefixed by the NamespaceIndex (see 3.4.2.2).
Nodes of all other NodeClasses cannot be defined in the same table; therefore only the used ReferenceType, their NodeClass and their BrowseName are specified. A reference to another part of this document points to their definition. Table 2 illustrates the table. If no components are provided, the DataType, TypeDefinition and ModellingRule columns may be omitted and only a Comment column is introduced to point to the Node definition.
[bookmark: _Hlk88558169]Each Type Node or well-known Instance Node defined shall have one or more ConformanceUnits defined in Fehler! Verweisquelle konnte nicht gefunden werden. that require the Node to be in the AddressSpace. 
The relations between Nodes and ConformanceUnits are defined at the end of the tables defining Nodes, one row per ConformanceUnit. The ConformanceUnits are reflected in the Category element for the Node definition in the UANodeSet (see OPC 10000-6).
The list of ConformanceUnits in the UANodeSet allows Servers to optimize resource consumption by using a list of supported ConformanceUnits to select a subset of the Nodes in an Information Model. 
When a Node is selected in this way, all dependencies implied by the References are also selected.
Dependencies exist if the Node is the source of HasTypeDefinition, HasInterface, HasAddIn or any HierarchicalReference. Dependencies also exist if the Node is the target of a HasSubtype Reference. For Variables and VariableTypes, the value of the DataType Attribute is a dependency. For DataType Nodes, any DataTypes referenced in the DataTypeDefinition Attribute are also dependencies.
For additional details see OPC 10000-5.
[bookmark: _Ref17363933][bookmark: _Ref81297423][bookmark: _Toc96249405][bookmark: _Toc199759642][bookmark: _Toc200441468][bookmark: _Toc200441835][bookmark: _Toc200979851][bookmark: _Toc202695334][bookmark: _Ref265492156][bookmark: _Toc265516743][bookmark: _Toc332195659][bookmark: _Toc499116098][bookmark: _Toc17459975][bookmark: _Toc194403814]Table 2 – Type Definition Table
	Attribute
	Value

	Attribute name
	Attribute value. If it is an optional Attribute that is not set “--“ will be used.

	
	

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Other

	ReferenceType name
	NodeClass of the target Node.
	BrowseName of the target Node.
	DataType of the referenced Node, only applicable for Variables.
	TypeDefinition of the referenced Node, only applicable for Variables and Objects.
	Additional characteristics of the TargetNode such as the ModellingRule or AccessLevel.

	NOTE Notes referencing footnotes of the table content.

	Conformance Units

	Name of ConformanceUnit, one row per ConformanceUnit



Components of Nodes can be complex that is containing components by themselves. The TypeDefinition, NodeClass and DataType can be derived from the type definitions, and the symbolic name can be created as defined in 3.4.3.1. Therefore, those containing components are not explicitly specified; they are implicitly specified by the type definitions.
The Other column defines additional characteristics of the Node. Examples of characteristics that can appear in this column are show in Table 3.
[bookmark: _Ref16778333][bookmark: _Toc18148710][bookmark: _Toc194403815]Table 3 – Examples of Other Characteristics
	Name
	Short Name
	Description

	0:Mandatory
	M
	The Node has the Mandatory ModellingRule.

	0:Optional
	O
	The Node has the Optional ModellingRule.

	0:MandatoryPlaceholder
	MP
	The Node has the MandatoryPlaceholder ModellingRule.

	0:OptionalPlaceholder
	OP
	The Node has the OptionalPlaceholder ModellingRule.

	ReadOnly
	RO
	The Node AccessLevel has the CurrentRead bit set but not the CurrentWrite bit.

	ReadWrite
	RW
	The Node AccessLevel has the CurrentRead and CurrentWrite bits set.

	WriteOnly
	WO
	The Node AccessLevel has the CurrentWrite bit set but not the CurrentRead bit.



If multiple characteristics are defined they are separated by commas. The name or the short name may be used.
[bookmark: _Ref56769162]Additional References
To provide information about additional References, the format as shown in Table 4 is used.
[bookmark: _Ref56768351][bookmark: _Toc194403816]Table 4 – <some> Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	SourceBrowsePath is always relative to the TypeDefinition. Multiple elements are defined as separate rows of a nested table.
	ReferenceType name
	True = forward Reference
	TargetBrowsePath points to another Node, which can be a well-known instance or a TypeDefinition. You can use BrowsePaths here as well, which is either relative to the TypeDefinition or absolute.
If absolute, the first entry needs to refer to a type or well-known instance, uniquely identified within a namespace by the BrowseName.



References can be to any other Node.
[bookmark: _Ref56769276]Additional sub-components
To provide information about sub-components, the format as shown in Table 5 is used.
[bookmark: _Ref56768501][bookmark: _Toc194403817]Table 5 – <some>Type Additional Subcomponents
	BrowsePath
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

	BrowsePath is always relative to the TypeDefinition. Multiple elements are defined as separate rows of a nested table
	NOTE Same as for Table 2



[bookmark: _Ref56769685]Additional Attribute values
The type definition table provides columns to specify the values for required Node Attributes for InstanceDeclarations. To provide information about additional Attributes, the format as shown in Table 6 is used.
[bookmark: _Ref56768699][bookmark: _Toc194403818]Table 6 – <some>Type Attribute values for child nodes
	BrowsePath
	<Attribute name> Attribute

	BrowsePath is always relative to the TypeDefinition. Multiple elements are defined as separate rows of a nested table
	The values of attributes are converted to text by adapting the reversible JSON encoding rules defined in OPC 10000-6.
If the JSON encoding of a value is a JSON string or a JSON number then that value is entered in the value field. Double quotes are not included.
If the DataType includes a NamespaceIndex (QualifiedNames, NodeIds or ExpandedNodeIds) then the notation used for BrowseNames is used.
If the value is an Enumeration the name of the enumeration value is entered.
If the value is a Structure then a sequence of name and value pairs is entered. Each pair is followed by a newline. The name is followed by a colon. The names are the names of the fields in the DataTypeDefinition.
If the value is an array of non-structures then a sequence of values is entered where each value is followed by a newline.
If the value is an array of Structures or a Structure with fields that are arrays or with nested Structures then the complete JSON array or JSON object is entered.



There can be multiple columns to define more than one Attribute.
[bookmark: _Toc205798670][bookmark: _Toc265516543][bookmark: _Toc349746860][bookmark: _Toc499115805][bookmark: _Toc500431944][bookmark: _Ref25046736][bookmark: _Toc65744314][bookmark: _Toc88555072][bookmark: _Toc88555398][bookmark: _Toc88555492][bookmark: _Toc194572928]NodeIds and BrowseNames
[bookmark: _Toc205798671][bookmark: _Toc265516544][bookmark: _Toc349746861][bookmark: _Toc499115806][bookmark: _Ref499808407][bookmark: _Ref499894873][bookmark: _Toc500431945]NodeIds
The NodeIds of all Nodes described in this standard are only symbolic names. Annex A defines the actual NodeIds.
The symbolic name of each Node defined in this document is its BrowseName, or, when it is part of another Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In this case “part of” means that the whole has a HasProperty or HasComponent Reference to its part. Since all Nodes not being part of another Node have a unique name in this document, the symbolic name is unique.
The NamespaceUri for all NodeIds defined in this document is defined in Annex A. The NamespaceIndex for this NamespaceUri is vendor-specific and depends on the position of the NamespaceUri in the server namespace table.
Note that this document not only defines concrete Nodes, but also requires that some Nodes shall be generated, for example one for each Session running on the Server. The NodeIds of those Nodes are Server-specific, including the namespace. But the NamespaceIndex of those Nodes cannot be the NamespaceIndex used for the Nodes defined in this document, because they are not defined by this document but generated by the Server.
[bookmark: _Toc205798672][bookmark: _Toc265516545][bookmark: _Toc349746862][bookmark: _Toc499115807][bookmark: _Toc500431946][bookmark: _Ref25046743]BrowseNames
The text part of the BrowseNames for all Nodes defined in this document is specified in the tables defining the Nodes. The NamespaceUri for all BrowseNames defined in this document is defined in 9.2.
For InstanceDeclarations of NodeClass Object and Variable that are placeholders (OptionalPlaceholder and MandatoryPlaceholder ModellingRule), the BrowseName and the DisplayName are enclosed in angle brackets (<>) as recommended in OPC 10000-3.
If the BrowseName is not defined by this document, a namespace index prefix is added to the BrowseName (e.g., prefix '0' leading to ‘0:EngineeringUnits’ or prefix '2' leading to ‘2:DeviceRevision’). This is typically necessary if a Property of another specification is overwritten or used in the OPC UA types defined in this document. Table 55 provides a list of namespaces and their indexes as used in this document.
[bookmark: _Toc205798673][bookmark: _Toc265516546][bookmark: _Toc349746863][bookmark: _Toc499115808][bookmark: _Toc500431947][bookmark: _Toc65744315][bookmark: _Toc88555073][bookmark: _Toc88555399][bookmark: _Toc88555493][bookmark: _Toc194572929]Common Attributes
[bookmark: _Toc205798674][bookmark: _Toc265516547][bookmark: _Toc349746864][bookmark: _Toc499115809][bookmark: _Ref499894926][bookmark: _Toc500431948]General
The Attributes of Nodes, their DataTypes and descriptions are defined in OPC 10000-3. Attributes not marked as optional are mandatory and shall be provided by a Server. The following tables define if the Attribute value is defined by this specification or if it is server-specific.
For all Nodes specified in this specification, the Attributes named in Table 7 shall be set as specified in the table.
[bookmark: _Ref499807592][bookmark: _Toc265516744][bookmark: _Toc332195660][bookmark: _Toc499116099][bookmark: _Toc18148711][bookmark: _Toc194403819]Table 7 – Common Node Attributes
	Attribute
	Value

	DisplayName
	The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to the BrowseName of the Node for the LocaleId “en”. Whether the server provides translated names for other LocaleIds is server-specific.

	Description
	Optionally a server-specific description is provided.

	NodeClass
	Shall reflect the NodeClass of the Node.

	NodeId
	The NodeId is described by BrowseNames as defined in 3.4.2.1.

	WriteMask
	Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it shall set all non-server-specific Attributes to not writable. For example, the Description Attribute may be set to writable since a Server may provide a server-specific description for the Node. The NodeId shall not be writable, because it is defined for each Node in this specification.

	UserWriteMask
	Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask Attribute apply.

	RolePermissions
	Optionally server-specific role permissions can be provided.

	UserRolePermissions
	Optionally the role permissions of the current Session can be provided. The value is server-specifc and depend on the RolePermissions Attribute (if provided) and the current Session.

	AccessRestrictions
	Optionally server-specific access restrictions can be provided.



[bookmark: _Toc205798675][bookmark: _Toc265516548][bookmark: _Toc349746865][bookmark: _Toc499115810][bookmark: _Toc500431949]Objects
For all Objects specified in this specification, the Attributes named in Table 8 shall be set as specified in the table. The definitions for the Attributes can be found in OPC 10000-3.
[bookmark: _Ref499807626][bookmark: _Ref25049681][bookmark: _Toc265516745][bookmark: _Toc332195661][bookmark: _Toc499116100][bookmark: _Ref25049677][bookmark: _Toc194403820]Table 8 – Common Object Attributes
	Attribute
	Value

	EventNotifier
	Whether the Node can be used to subscribe to Events or not is server-specific.



[bookmark: _Toc205798676][bookmark: _Toc265516549][bookmark: _Toc349746866][bookmark: _Toc499115811][bookmark: _Toc500431950]Variables
For all Variables specified in this specification, the Attributes named in Table 9 shall be set as specified in the table. The definitions for the Attributes can be found in OPC 10000-3.
[bookmark: _Ref25049714][bookmark: _Ref499807645][bookmark: _Toc265516746][bookmark: _Toc332195662][bookmark: _Toc499116101][bookmark: _Toc194403821]Table 9 – Common Variable Attributes
	Attribute
	Value

	MinimumSamplingInterval
	Optionally, a server-specific minimum sampling interval is provided.

	AccessLevel
	The access level for Variables used for type definitions is server-specific, for all other Variables defined in this specification, the access level shall allow reading; other settings are server-specific.

	UserAccessLevel
	The value for the UserAccessLevel Attribute is server-specific. It is assumed that all Variables can be accessed by at least one user.

	Value
	For Variables used as InstanceDeclarations, the value is server-specific; otherwise it shall represent the value described in the text.

	ArrayDimensions
	If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-specific.
If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the ArrayDimensions Attribute shall be specified in the table defining the Variable.

	Historizing
	The value for the Historizing Attribute is server-specific.

	AccessLevelEx
	If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0, meaning that read and write operations on an individual Variable are atomic, and arrays can be partly written.



[bookmark: _Toc205798677][bookmark: _Toc265516550][bookmark: _Toc349746867][bookmark: _Toc499115812][bookmark: _Toc500431951]VariableTypes
For all VariableTypes specified in this specification, the Attributes named in Table 10 shall be set as specified in the table. The definitions for the Attributes can be found in OPC 10000-3.
[bookmark: _Ref25049746][bookmark: _Ref499807679][bookmark: _Toc265516747][bookmark: _Toc332195663][bookmark: _Toc499116102][bookmark: _Toc194403822]Table 10 – Common VariableType Attributes
	Attributes
	Value

	Value
	Optionally a server-specific default value can be provided.

	ArrayDimensions
	If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-specific.
If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the ArrayDimensions Attribute shall be specified in the table defining the VariableType.


[bookmark: _Toc499115813][bookmark: _Toc500431952]Methods
For all Methods specified in this specification, the Attributes named in Table 11 shall be set as specified in the table. The definitions for the Attributes can be found in OPC 10000-3.
[bookmark: _Ref25049751][bookmark: _Ref497310130][bookmark: _Toc499116103][bookmark: _Toc194403823]Table 11 – Common Method Attributes
	Attributes
	Value

	Executable
	All Methods defined in this specification shall be executable (Executable Attribute set to “True”), unless it is defined differently in the Method definition.

	UserExecutable
	The value of the UserExecutable Attribute is server-specific. It is assumed that all Methods can be executed by at least one user. 



[bookmark: _Toc194572930]Structures
OPC 10000-3 differentiates between different kinds of Structures. The following conventions explain, how these Structures shall be defined.
The first kind are Structures without optional fields where none of the fields allows subtype (except fields with abstract DataTypes). Its definition is in Table 12.
[bookmark: _Ref118130847][bookmark: _Toc194403824]Table 12 – Structures without optional fields where none of the fields allow subtypes
	Name
	Type
	Description

	<someStructure>
	structure
	Subtype of <someParentStructure> defined in …

		SP1
	0:Byte[]
	Setpoint 1

		SP2
	0:Byte[]
	Setpoint 2



The second kind are Structures with optional fields where none of the fields allows subtypes (except fields with abstract DataTypes). Its definition is in Table 13.
Structures with fields that are optional have an “Optional” column. Fields that are optional have True set, otherwise False.
[bookmark: _Ref118131562][bookmark: _Toc194403825]Table 13 – Structures with optional fields
	Name
	Type
	Description
	Optional

	<someStructure>
	structure
	Subtype of <someParentStructure> defined in …
	

		SP1
	0:Byte[]
	Setpoint 1
	False

		SP2
	0:Byte[]
	Setpoint 2
	True



The third kind are Structures without optional fields where one or more of the fields allow subtypes. Its definition is in Table 14.
Structures with fields that allow subtypes have an “Allow Subtypes” column. Fields that allow subtypes have True set, otherwise False. Fields with abstract DataTypes can always be subtyped.
[bookmark: _Ref118131573][bookmark: _Toc194403826]Table 14 – Structures where one or more of the fields allow subtypes
	Name
	Type
	Description
	Allow SubTypes

	<someStructure>
	structure
	Subtype of <someParentStructure> defined in …
	

		SP1
	0:Byte[]
	Setpoint 1
	False

		Allow Subtypes
	0:ByteString
	Some Bytestring 
	True



Fields with abstract DataTypes shall have True in the “Allow Subtypes” column.

It is not allowed to add both columns to combine optional fields and fields that allow subtypes in one structure.





[bookmark: _Toc442691849][bookmark: _Toc500431953][bookmark: _Toc502913909][bookmark: _Toc65744316][bookmark: _Toc88555074][bookmark: _Toc88555400][bookmark: _Toc88555494][bookmark: _Toc194572931]General information to <title> and OPC UA
[bookmark: _Toc442691850][bookmark: _Toc500431954][bookmark: _Toc502913910][bookmark: _Toc65744317][bookmark: _Toc88555075][bookmark: _Toc88555401][bookmark: _Toc88555495][bookmark: _Toc194572932]Introduction to <title>
Insert an introduction (about one page) of the companion organization and the model that it represents.
[bookmark: _Toc442691851][bookmark: _Toc500431955][bookmark: _Toc502913911][bookmark: _Toc65744318][bookmark: _Toc88555076][bookmark: _Toc88555402][bookmark: _Toc88555496][bookmark: _Toc194572933]Introduction to OPC Unified Architecture

This is an OPC UA introduction that may be used as is, shortened or enhanced as appropriate.

[bookmark: _Toc500431956][bookmark: _Toc65744319][bookmark: _Toc88555077][bookmark: _Toc88555403][bookmark: _Toc88555497][bookmark: _Toc194572934]What is OPC UA?
OPC UA is an open and royalty free set of standards designed as a universal communication protocol. While there are numerous communication solutions available, OPC UA has key advantages:
[bookmark: _Hlk25049414]A state of art security model (see OPC 10000-2).
A fault tolerant communication protocol.
An information modelling framework that allows application developers to represent their data in a way that makes sense to them.
OPC UA has a broad scope which delivers for economies of scale for application developers. This means that a larger number of high-quality applications at a reasonable cost are available. When combined with semantic models such as <title>, OPC UA makes it easier for end users to access data via generic commercial applications.
The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process information locally and then provide that data in a consistent format to any application requesting data - ERP, MES, PMS, Maintenance Systems, HMI, Smartphone or a standard Browser, for examples. For a more complete overview see 
OPC 10000-1.
[bookmark: _Toc500431957][bookmark: _Toc65744320][bookmark: _Toc88555078][bookmark: _Toc88555404][bookmark: _Toc88555498][bookmark: _Toc194572935]Basics of OPC UA
As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP, Web Sockets.
As an extensible standard, OPC UA provides a set of Services (see OPC 10000-4) and a basic information model framework. This framework provides an easy manner for creating and exposing vendor defined information in a standard way. More importantly all OPC UA Clients are expected to be able to discover and use vendor-defined information. This means OPC UA users can benefit from the economies of scale that come with generic visualization and historian applications. This specification is an example of an OPC UA Information Model designed to meet the needs of developers and users.
OPC UA Clients can be any consumer of data from another device on the network to browser based thin clients and ERP systems. The full scope of OPC UA applications is shown in Figure 1.


[bookmark: _Ref25056187][bookmark: _Ref25056184][bookmark: _Toc65758976][bookmark: _Toc194403808][bookmark: _Ref17441490][bookmark: _Ref502911751][bookmark: _Toc495645690][bookmark: _Ref17441489][bookmark: _Toc17459190][bookmark: _Toc17459954]Figure 1 – The Scope of OPC UA within an Enterprise
[bookmark: _Hlk25049286]OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling lost messages, failover, heartbeat, etc. With its binary encoded data, it offers a high-performing data exchange solution. Security is built into OPC UA as security requirements become more and more important especially since environments are connected to the office network or the internet and attackers are starting to focus on automation systems.
[bookmark: _Toc500431958][bookmark: _Toc65744321][bookmark: _Toc88555079][bookmark: _Toc88555405][bookmark: _Toc88555499][bookmark: _Toc194572936]Information modelling in OPC UA
[bookmark: _Toc500431959]Concepts
OPC UA provides a framework that can be used to represent complex information as Objects in an AddressSpace which can be accessed with standard services. These Objects consist of Nodes connected by References. Different classes of Nodes convey different semantics. For example, a Variable Node represents a value that can be read or written. The Variable Node has an associated DataType that can define the actual value, such as a string, float, structure etc. It can also describe the Variable value as a variant. A Method Node represents a function that can be called. Every Node has a number of Attributes including a unique identifier called a NodeId and non-localized name called as BrowseName. An Object representing a ‘Reservation’ is shown in Figure 2.


[bookmark: _Ref25056221][bookmark: _Toc495645691][bookmark: _Toc17459191][bookmark: _Toc17459955][bookmark: _Toc65758977][bookmark: _Toc194403809]Figure 2 – A Basic Object in an OPC UA Address Space 
Object and Variable Nodes represent instances and they always reference a TypeDefinition (ObjectType or VariableType) Node which describes their semantics and structure. Figure 3 illustrates the relationship between an instance and its TypeDefinition.
The type Nodes are templates that define all of the children that can be present in an instance of the type. In the example in Figure 3 the PersonType ObjectType defines two children: First Name and Last Name. All instances of PersonType are expected to have the same children with the same BrowseNames. Within a type the BrowseNames uniquely identify the children. This means Client applications can be designed to search for children based on the BrowseNames from the type instead of NodeIds. This eliminates the need for manual reconfiguration of systems if a Client uses types that multiple Servers implement.
[bookmark: _Hlk25049383]OPC UA also supports the concept of sub-typing. This allows a modeller to take an existing type and extend it. There are rules regarding sub-typing defined in OPC 10000-3, but in general they allow the extension of a given type or the restriction of a DataType. For example, the modeller may decide that the existing ObjectType in some cases needs an additional Variable. The modeller can create a subtype of the ObjectType and add the Variable. A Client that is expecting the parent type can treat the new type as if it was of the parent type. Regarding DataTypes, subtypes can only restrict. If a Variable is defined to have a numeric value, a sub type could restrict it to a float.


[bookmark: _Ref25056259][bookmark: _Toc18148705][bookmark: _Toc65758978][bookmark: _Toc194403810]Figure 3 – The Relationship between Type Definitions and Instances 
References allow Nodes to be connected in ways that describe their relationships. All References have a ReferenceType that specifies the semantics of the relationship. References can be hierarchical or non-hierarchical. Hierarchical references are used to create the structure of Objects and Variables. Non-hierarchical are used to create arbitrary associations. Applications can define their own ReferenceType by creating subtypes of an existing ReferenceType. Subtypes inherit the semantics of the parent but may add additional restrictions. Figure 4 depicts several References, connecting different Objects.


[bookmark: _Ref495482128][bookmark: _Toc18148706][bookmark: _Toc65758979][bookmark: _Toc194403811]Figure 4 – Examples of References between Objects 
The figures above use a notation that was developed for the OPC UA specification. The notation is summarized in Figure 5. UML representations can also be used; however, the OPC UA notation is less ambiguous because there is a direct mapping from the elements in the figures to Nodes in the AddressSpace of an OPC UA Server.


[bookmark: _Ref56767764][bookmark: _Ref495482154][bookmark: _Toc495645694][bookmark: _Ref38268552][bookmark: _Toc65758980][bookmark: _Toc194403812]Figure 5 – The OPC UA Information Model Notation
[bookmark: _Toc500431960]A complete description of the different types of Nodes and References can be found in OPC 10000-3 and the base structure is described in OPC 10000-5.
OPC UA specification defines a very wide range of functionality in its basic information model. It is not required that all Clients or Servers support all functionality in the OPC UA specifications. OPC UA includes the concept of Profiles, which segment the functionality into testable certifiable units. This allows the definition of functional subsets (that are expected to be implemented) within a companion specification. The Profiles do not restrict functionality, but generate requirements for a minimum set of functionality (see OPC 10000-7)
Namespaces
[bookmark: _Toc500431961]OPC UA allows information from many different sources to be combined into a single coherent AddressSpace. Namespaces are used to make this possible by eliminating naming and id conflicts between information from different sources. Each namespace in OPC UA has a globally unique string called a NamespaceUri which identifies a naming authority and a locally unique integer called a NamespaceIndex, which is an index into the Server's table of NamespaceUris. The NamespaceIndex is unique only within the context of a Session between an OPC UA Client and an OPC UA Server- the NamespaceIndex can change between Sessions and still identify the same item even though the NamespaceUri's location in the table has changed. The Services defined for OPC UA use the NamespaceIndex to specify the Namespace for qualified values.
There are two types of structured values in OPC UA that are qualified with NamespaceIndexes: NodeIds and QualifiedNames. NodeIds are locally unique (and sometimes globally unique) identifiers for Nodes. The same globally unique NodeId can be used as the identifier in a node in many Servers – the node's instance data may vary but its semantic meaning is the same regardless of the Server it appears in. This means Clients can have built-in knowledge of of what the data means in these Nodes. OPC UA Information Models generally define globally unique NodeIds for the TypeDefinitions defined by the Information Model.
QualifiedNames are non-localized names qualified with a Namespace. They are used for the BrowseNames of Nodes and allow the same names to be used by different information models without conflict. TypeDefinitions are not allowed to have children with duplicate BrowseNames; however, instances do not have that restriction.
Companion Specifications
[bookmark: _Toc500431962]An OPC UA companion specification for an industry specific vertical market describes an Information Model by defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that represent the concepts used in the vertical market, and potentially also well-defined Objects as entry points into the AddressSpace.
[bookmark: _Toc502913912][bookmark: _Toc65744322][bookmark: _Toc88555080][bookmark: _Toc88555406][bookmark: _Toc88555500][bookmark: _Toc194572937]Use cases
Insert one or two use cases that can be achieved by using OPC UA with the companion organization’s information model.
[bookmark: _Toc442691855][bookmark: _Toc500431963][bookmark: _Toc502913913][bookmark: _Toc65744323][bookmark: _Toc88555081][bookmark: _Toc88555407][bookmark: _Toc88555501][bookmark: _Toc194572938][bookmark: _Toc96249371][bookmark: _Ref129081910][bookmark: _Ref129647593][bookmark: _Toc199759454][bookmark: _Toc200441279][bookmark: _Toc200441646][bookmark: _Toc200979662][bookmark: _Toc202695145][bookmark: _Toc202698354]<title> Information Model overview
An overview of the model elements and how they relate to each other.

Following shall be sections that specify the companion information model. Such models may vary and no fixed structure can be given. An option could be to have separate chapters for ObjectTypes, VariableTypes, DataTypes, a.s.o.

[bookmark: _Toc500431964][bookmark: _Toc502913914][bookmark: _Toc65744324][bookmark: _Toc88555082][bookmark: _Toc88555408][bookmark: _Toc88555502][bookmark: _Toc194572939]OPC UA ObjectTypes
[bookmark: _Toc194572940]BeltConveyorType ObjectType Definition
[bookmark: _Toc194572941]Overview
The BeltConveyorType describes the entry point into the information model of a belt conveyor. It is defined in Table 15.
[bookmark: _Ref194403864]Table 15 – BeltConveyorType Definition
	Attribute
	Value

	BrowseName
	BeltConveyorType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 5:MiningEquipmentType defined in OPC 40560

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	M

	0:HasComponent
	Object
	Components
	
	4:MachineComponentsType
	O

	0:HasComponent
	Object
	Monitoring
	
	4:MonitoringType
	M

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	M

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
[bookmark: _Hlk159937183]Components represents a collection of all identifiable components contained below this Object.
Monitoring represents a collection of ObjectTypes and VariableTypes, representing the current state of the process, that are not assigned to a component but to this Object. 
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.

The components of the BeltConveyorType have additional references which are defined in Table 16.
[bookmark: _Ref194403917]Table 16 – BeltConveyorType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Components

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Monitoring



The components of the BeltConveyorType have additional subcomponents which are defined in Table 17.
[bookmark: _Ref194403927]Table 17 – BeltConveyorType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

	Components
	0:HasComponent
	Object
	DriveController
	
	DriveControllerType
	O

	Components
	0:HasComponent
	Object
	Belt
	
	BeltType
	O

	Components
	0:HasComponent
	Object
	<Pulley>
	
	PulleyType
	OP

	Components
	0:HasComponent
	Object
	<BeltScale>	Comment by Christopher Liehr: tbd
	
	
	OP

	Components
	0:HasComponent
	Object
	<WeatherStation>
	
	WeatherStationType
	OP

	Components
	0:HasComponent
	Object
	<Scraper>
	
	ScraperType
	OP

	Components
	0:HasComponent
	Object
	<ConveyorRoll>
	
	ConveyorRollType
	OP

		Monitoring

	Status



	0:HasComponent
	Object
	ConveyorStateMachine	Comment by Christopher Liehr: tbd
	
	
	M

		Monitoring

	Status



	0:HasComponent
	
	TypeOfRunning	Comment by Christopher Liehr: Was verstehen wir darunter?	Comment by Christopher Liehr: None
Running
EmergencyRunning
Revision
	
	
	O



DriveController is
Belt is
Pulley is
BeltScale is
WeatherStation is
Scraper is
ConveyorRollType is
ConveyorStateMachine is
TypeOfRunning is
[bookmark: _Toc194572942]DriveControllerType ObjectType Definition
[bookmark: _Toc194572943]Overview
The DriveControllerType provides all the data required for a drive controller of a conveyor belt system that is needed to fulfil the defined use cases. It is formally defined in Table 18.
[bookmark: _Ref194403949]Table 18 – DriveControllerType Definition
	Attribute
	Value

	BrowseName
	DriveControllerType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 5:MiningEquipmentType defined in OPC 40560

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasComponent
	Object
	Components
	
	4:MachineComponentsType
	

	0:HasComponent
	Object
	Operating	Comment by Christopher Liehr: Ggf ersetzen? Siehe General Types
	
	0:FolderType
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
Components represents a collection of all identifiable components contained below this Object.
Operating is representing a collection of Methods that can be triggered by this Object.
Monitoring represents a collection of ObjectTypes and VariableTypes, representing the current state of the process, that are not assigned to a component but to this Object. 
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.

The components of the DriveControllerType have additional references which are defined in Table 19.
[bookmark: _Ref194403957]Table 19 – DriveControllerType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Components



The components of the DriveControllerType have additional subcomponents which are defined in Table 20.
[bookmark: _Ref194403964]Table 20 – DriveControllerType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

	Operating
	0:HasComponent
	Method
	ConveyorStart
	
	
	

	Operating
	0:HasComponent
	Method
	ConveyorStop
	
	
	

	Operating
	0:HasComponent
	Method
	CloseBreak
	
	
	

	Operating
	0:HasComponent
	Method
	OpenBreak
	
	
	



[bookmark: _Toc194572944]ConveyorStart	Comment by Christopher Liehr: tbd
The Method ConveyorStart .... . The signature of this Method is specified below. Table 21 and Table 22 specify the Arguments and AdressSpace representation, respectively.
Signature
ConveyorStart (
	[in]	DataType	InArg1,
	[in]	DataType	InArg2,
	[out]	DataType	OutArg1,
	[out]	DataType	OutArg2)

[bookmark: _Ref194405708]Table 21 – ConveyorStart Method Arguments
	Argument
	Description

	InArg1
	

	InArg2
	

	OutArg1
	

	OutArg2
	



[bookmark: _Ref194405709]Table 22 – ConveyorStart Method AddressSpace Definition
	Attribute
	Value

	BrowseName
	ConveyorStart

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	0:HasProperty
	Variable
	0:InputArguments
	0:Argument[]
	0:PropertyType
	0:Mandatory

	0:HasProperty
	Variable
	0:OutputArguments
	0:Argument[]
	0:PropertyType
	0:Mandatory



[bookmark: _Toc194572945]ConveyorStop	Comment by Christopher Liehr: tbd
The Method ConveyorStop .... . The signature of this Method is specified below. Table 23 and Table 24 specify the Arguments and AdressSpace representation, respectively.
Signature
ConveyorStop (
	[in]	DataType	InArg1,
	[in]	DataType	InArg2,
	[out]	DataType	OutArg1,
	[out]	DataType	OutArg2)

[bookmark: _Ref194405757]Table 23 – ConveyorStop Method Arguments
	Argument
	Description

	InArg1
	

	InArg2
	

	OutArg1
	

	OutArg2
	



[bookmark: _Ref194405758]Table 24 – ConveyorStop Method AddressSpace Definition
	Attribute
	Value

	BrowseName
	ConveyorStop

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	0:HasProperty
	Variable
	0:InputArguments
	0:Argument[]
	0:PropertyType
	0:Mandatory

	0:HasProperty
	Variable
	0:OutputArguments
	0:Argument[]
	0:PropertyType
	0:Mandatory



[bookmark: _Toc194572946]CloseBreak	Comment by Christopher Liehr: tbd
The Method CloseBreak .... . The signature of this Method is specified below. Table 25 and Table 26 specify the Arguments and AdressSpace representation, respectively.
Signature
CloseBreak (
	[in]	DataType	InArg1,
	[in]	DataType	InArg2,
	[out]	DataType	OutArg1,
	[out]	DataType	OutArg2)

[bookmark: _Ref194405932]Table 25 – CloseBreak Method Arguments
	Argument
	Description

	InArg1
	

	InArg2
	

	OutArg1
	

	OutArg2
	



[bookmark: _Ref194405933]Table 26 – CloseBreak Method AddressSpace Definition
	Attribute
	Value

	BrowseName
	CloseBreak

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	0:HasProperty
	Variable
	0:InputArguments
	0:Argument[]
	0:PropertyType
	0:Mandatory

	0:HasProperty
	Variable
	0:OutputArguments
	0:Argument[]
	0:PropertyType
	0:Mandatory



[bookmark: _Toc194572947]OpenBreak	Comment by Christopher Liehr: tbd
The Method OpenBreak .... . The signature of this Method is specified below. Table 27 and Table 28 specify the Arguments and AdressSpace representation, respectively.
Signature
OpenBreak (
	[in]	DataType	InArg1,
	[in]	DataType	InArg2,
	[out]	DataType	OutArg1,
	[out]	DataType	OutArg2)

[bookmark: _Ref194405955]Table 27 – OpenBreak Method Arguments
	Argument
	Description

	InArg1
	

	InArg2
	

	OutArg1
	

	OutArg2
	



[bookmark: _Ref194405956]Table 28 – OpenBreak Method AddressSpace Definition
	Attribute
	Value

	BrowseName
	OpenBreak

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	0:HasProperty
	Variable
	0:InputArguments
	0:Argument[]
	0:PropertyType
	0:Mandatory

	0:HasProperty
	Variable
	0:OutputArguments
	0:Argument[]
	0:PropertyType
	0:Mandatory



[bookmark: _Toc194572948]ConveyorDriveType ObjectType Definition
[bookmark: _Toc194572949]Overview
The ConveyorDriveType provides ... and is formally defined in Table 21.
[bookmark: _Ref194403986]Table 29 – ConveyorDriveType Definition
	Attribute
	Value

	BrowseName
	ConveyorDriveType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 5:MiningEquipmentType defined in OPC 40560

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasComponent
	Object
	Monitoring
	
	4:MonitoringType
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
Monitoring represents a collection of ObjectTypes and VariableTypes, representing the current state of the process, that are not assigned to a component but to this Object. 
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.

The components of the ConveyorDriveType have additional references which are defined in Table 22.
[bookmark: _Ref194404004]Table 30 – ConveyorDriveType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Monitoring

	MachineryBuildingBlocks
	0:HasAddIn
	True
		Monitoring

	Status

	MachineryItemState






The components of the ConveyorDriveType have additional subcomponents which are defined in Table 23.
[bookmark: _Ref194404011]Table 31 – ConveyorDriveType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

		Monitoring

	Status



	0:HasComponent
	Object
	MachineryItemState
	
	4:MachineryItemState_StateMachineType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	BeltRunningDirection	Comment by Christopher Liehr: Values:
FromTailToHead
FromHeadToTail
undefined
	
	0:Enumeration
	

		Monitoring

	Status



	0:HasProperty
	Variable
	SavedTorqueReached
	0:Boolean
	0:PropertyType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	TargetSpeedReached
	0:Boolean
	0:PropertyType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	ConveyorStopped
	0:Boolean
	0:PropertyType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	AcknowledgeStart
	0:Boolean
	0:PropertyType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	ConveyorStarted
	0:Boolean
	0:PropertyType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	Torque
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	BeltSpeed
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	MotorSpeed
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	MotorPower
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	MotorCurrent
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	SavedTorque
	0:Double
	0:AnalogUnitType
	



MachineryItemState is used as defined in OPC 40001-1. It represents a StateMachine that shows the current machine state.
BeltRunningDirection is
SavedTorqueReached is
TargetSpeedReached is
ConveyorStopped is
AcknowledgeStart is
ConveyorStarted is
Torque is
BeltSpeed is
MotorSpeed is
MotorPower is
MotorCurrent is
SavedTorque is

[bookmark: _Toc194572950]ConveyorBrakeType ObjectType Definition
[bookmark: _Toc194572951]Overview
The ConveyorBrakeType provides ... and is formally defined in Table 24.
[bookmark: _Ref194404037]Table 32 – ConveyorBrakeType Definition
	Attribute
	Value

	BrowseName
	ConveyorBrakeType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 5:MiningEquipmentType defined in OPC 40560

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasComponent
	Object
	Monitoring
	
	4:MonitoringType
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
Monitoring represents a collection of ObjectTypes and VariableTypes, representing the current state of the process, that are not assigned to a component but to this Object. 
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.

The components of the ConveyorBrakeType have additional references which are defined in Table 25.
[bookmark: _Ref194404045]Table 33 – ConveyorBrakeType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Monitoring

	MachineryBuildingBlocks
	0:HasAddIn
	True
		Monitoring

	Status

	MachineryItemState






The components of the ConveyorBrakeType have additional subcomponents which are defined in Table 26.
[bookmark: _Ref194404055]Table 34 – ConveyorBrakeType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

		Monitoring

	Status



	0:HasComponent
	Object
	MachineryItemState
	
	4:MachineryItemState_StateMachineType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	BrakeReleased
	0:Boolean
	0:PropertyType
	

		Monitoring

	Process



	0:HasProperty
	Variable
	ReleaseTime
	0:Duration
	0:PropertyType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	BreakingTorque
	0:Double
	0:AnalogUnitType
	



MachineryItemState is used as defined in OPC 40001-1. It represents a StateMachine that shows the current machine state.
BrakeReleased is
ReleaseTime is
BreakingTorque is
[bookmark: _Toc194572952]BeltType ObjectType Definition
[bookmark: _Toc194572953]Overview
The BeltType provides ... and is formally defined in Table 27.
[bookmark: _Ref194404072]Table 35 – BeltType Definition
	Attribute
	Value

	BrowseName
	BeltType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 5:MiningEquipmentType defined in OPC 40560

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasComponent
	Object
	Components
	
	4:MachineComponentsType
	

	0:HasComponent
	Object
	Monitoring
	
	4:MonitoringType
	

	0:HasComponent
	Object
	MachineProperties
	
	0:FolderType
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
Components represents a collection of all identifiable components contained below this Object.
Monitoring represents a collection of ObjectTypes and VariableTypes, representing the current state of the process, that are not assigned to a component but to this Object. 
MachineProperties is representing a collection of static information that are assigned to this Object.
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.

The components of the BeltType have additional references which are defined in Table 28.
[bookmark: _Ref194404081]Table 36 – BeltType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Components

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Monitoring



The components of the BeltType have additional subcomponents which are defined in Table 29.
[bookmark: _Ref194404088]Table 37 – BeltType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

	Components
	0:HasComponent
	Object
	<BeltSection>
	
	BeltSectionType
	

	Components
	0:HasComponent
	Object
	<BeltSplice>
	
	BeltSpliceType
	

		Monitoring

	Status



	0:HasComponent
	Variable
	BeltPosition
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	BeltSideDeflectionLeft
	0:Boolean
	0:PropertyType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	BeltSideDeflectionRight
	0:Boolean
	0:PropertyType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	BeltTension
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	BeltPreTension
	0:Double
	0:AnalogUnitType
	

	MachineProperties
	0:HasComponent
	Variable
	BeltWidth
	0:Double
	0:AnalogUnitType
	



BeltSection is
BeltSplice is
BeltPosition is
BeltSideDeflectionLeft is
BeltSideDeflectionRight is
BeltTension is
BeltPreTension is
BeltWidth is
[bookmark: _Toc194572954]BeltSectionType ObjectType Definition
[bookmark: _Toc194572955]Overview
The BeltSectionType provides ... and is formally defined in Table 30.
[bookmark: _Ref194404105]Table 38 – BeltSectionType Definition
	Attribute
	Value

	BrowseName
	BeltSectionType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 0:BaseObjectType defined in OPC 10000-5

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasProperty
	Variable
	ProductionSite
	0:String
	0:PropertyType
	

	0:HasComponent
	Variable
	BeltSection
	0:Int32
	0:AnalogUnitType
	

	0:HasProperty
	Variable
	EmbeddedSensorTag
	0:String
	0:PropertyType
	

	0:HasComponent
	Variable
	BeltThickness
	0:Double
	0:AnalogUnitType
	

	0:HasProperty
	Variable
	ConnectedBeltSplices
	0:Int32[]
	0: PropertyType
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
ProductionSite is
BeltSection is
EmbeddedSensorTag is
BeltThickness is
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.

The components of the BeltSectionType have additional references which are defined in Table 31.
[bookmark: _Ref194404112]Table 39 – BeltSectionType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification



The components of the BeltSectionType have additional subcomponents which are defined in Table 32.
[bookmark: _Ref194404119]Table 40 – BeltSectionType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

	BeltThickness
	0:HasProperty
	Variable
	DateOfMeasurement
	0:DateTime
	0:PropertyType
	



[bookmark: _Toc194572956]BeltSpliceType ObjectType Definition
[bookmark: _Toc194572957]Overview
The BeltSpliceType provides ... and is formally defined in Table 33.
[bookmark: _Ref194404139]Table 41 – BeltSpliceType Definition
	Attribute
	Value

	BrowseName
	BeltSpliceType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 0:BaseObjectType defined in OPC 10000-5

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasComponent
	Variable
	Length
	0:Double
	0:AnalogUnitType
	

	0:HasComponent
	Variable
	NumberOfSteps
	0:Int32
	0:AnalogUnitType
	

	0:HasComponent
	Variable
	BeltSpliceNumber
	0:Int32
	0:AnalogUnitType
	

	0:HasComponent
	Variable
	StatusSplice	Comment by Christopher Liehr: Klären, wie wir den auslegen
	
	
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
Length is
NumberOfSteps is
BeltSpliceNumber is
StatusSplice is
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.


The components of the BeltSpliceType have additional references which are defined in Table 34.
[bookmark: _Ref194404147]Table 42 – BeltSpliceType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification



[bookmark: _Toc194572958]PulleyType ObjectType Definition
[bookmark: _Toc194572959]Overview
The PulleyType provides ... and is formally defined in Table 36.
[bookmark: _Ref194404170]Table 43 – PulleyType Definition
	Attribute
	Value

	BrowseName
	PulleyType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 5:MiningEquipmentType defined in OPC 40560

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasComponent
	Object
	Monitoring
	
	4:MonitoringType
	

	0:HasComponent
	Object
	MachineProperties
	
	0:FolderType
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
Monitoring represents a collection of ObjectTypes and VariableTypes, representing the current state of the process, that are not assigned to a component but to this Object. 
MachineProperties is representing a collection of static information that are assigned to this Object.
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.


The components of the PulleyType have additional references which are defined in Table 37.
[bookmark: _Ref194404524]Table 44 – PulleyType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Monitoring

	MachineryBuildingBlocks
	0:HasAddIn
	True
		Monitoring

	Status

	MachineryItemState






The components of the PulleyType have additional subcomponents which are defined in Table 38.
[bookmark: _Ref194404533]Table 45 – PulleyType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

		Monitoring

	Status



	0:HasComponent
	Object
	MachineryItemState
	
	4:MachineryItemState_StateMachineType
	

		Monitoring

	Status



	0:HasComponent
	Variable
	PullyEnumeration	Comment by Christopher Liehr: Enumeration:
Head
Tail
Drive
Discharge
Snub
Bend
TakeUp
TurnOver
Tripper
Other

Aus dieser Liste können 1 bis x Werte ausgewählt werden. Da muss ich noch schauen, wie das umsetzbar ist. 	Comment by Christopher Liehr: tbd
	
	
	

		Monitoring

	Process



	0:HasComponent
	Variable
	<BearingTemperature>
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	RotationalSpeed
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	Vibrations
	0:Double
	0:AnalogUnitType
	

	MachineProperties
	0:HasComponent
	Variable
	DiameterWithLagging
	0:Double
	0:AnalogUnitType
	

	MachineProperties
	0:HasComponent
	Variable
	FaceWidth
	0:Double
	0:AnalogUnitType
	



MachineryItemState is used as defined in OPC 40001-1. It represents a StateMachine that shows the current machine state.
PulleyEnumeration is
BearingTemperature is
RotationalSpeed is
Vibrations is
DiameterWithLagging is
FaceWidth is

[bookmark: _Toc194572960]WeatherStationType ObjectType Definition
[bookmark: _Toc194572961]Overview
The WeatherStationType provides ... and is formally defined in Table 37.
[bookmark: _Ref194404201]Table 46 – WeatherStationType Definition
	Attribute
	Value

	BrowseName
	WeatherStationType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 5:MiningEquipmentType defined in OPC 40560

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasComponent
	Object
	Monitoring
	
	4:MonitoringType
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
Monitoring represents a collection of ObjectTypes and VariableTypes, representing the current state of the process, that are not assigned to a component but to this Object. 
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.


The components of the WeatherStationType have additional references which are defined in Table 38.
[bookmark: _Ref194404208]Table 47 – WeatherStationType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Monitoring

	MachineryBuildingBlocks
	0:HasAddIn
	True
		Monitoring

	Status

	MachineryItemState






The components of the WeatherStationType have additional subcomponents which are defined in Table 39.
[bookmark: _Ref194404216]Table 48 – WeatherStationType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

		Monitoring

	Status



	0:HasComponent
	Object
	MachineryItemState
	
	4:MachineryItemState_StateMachineType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	Temperature
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	Humidity
	0:Double
	0:AnalogUnitType
	

		Monitoring

	Process



	0:HasComponent
	Variable
	Percipitation
	0:Double
	0:AnalogUnitType
	



MachineryItemState is used as defined in OPC 40001-1. It represents a StateMachine that shows the current machine state.
Temperature is
Humidity is
Precipitation is

[bookmark: _Toc194572962]ScraperType ObjectType Definition
[bookmark: _Toc194572963]Overview
The ScraperType provides ... and is formally defined in Table 40.
[bookmark: _Ref194404237]Table 49 – ScraperType Definition
	Attribute
	Value

	BrowseName
	ScraperType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 5:MiningEquipmentType defined in OPC 40560

	0:HasAddIn
	Object
	MiningEquipmentIdentification
	
	5:MiningEquipmentIdentificationType
	

	0:HasComponent
	Object
	Monitoring
	
	4:MonitoringType
	

	0:HasComponent
	Object
	MachineryBuildingBlocks
	
	0:FolderType
	

	Conformance Units

	

	



MiningEquipmentIdentification represents numerous identification features of a mining equipment. It is a subtype of the 4:MachineIdentificationType.
Monitoring represents a collection of ObjectTypes and VariableTypes, representing the current state of the process, that are not assigned to a component but to this Object. 
MachineryBuidlingBlocks is representing a folder that directly references all those building blocks of the OPC UA for Machinery (OPC 40001-1, OPC 40001-3) which are implemented as an add-in.

The components of the ScraperType have additional references which are defined in Table 41.
[bookmark: _Ref194404244]Table 50 – ScraperType Additional References
	SourceBrowsePath
	Reference Type
	Is Forward
	TargetBrowsePath

	MachineryBuildingBlocks
	0:HasAddIn
	True
	MiningEquipmentIdentification

	MachineryBuildingBlocks
	0:HasAddIn
	True
	Monitoring

	MachineryBuildingBlocks
	0:HasAddIn
	True
		Monitoring

	Status

	MachineryItemState






The components of the ScraperType have additional subcomponents which are defined in Table 42.
[bookmark: _Ref194404254]Table 51 – ScraperType Additional Subcomponents
	Source Path
	Reference
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Others

		Monitoring

	Status



	0:HasComponent
	Object
	MachineryItemState
	
	4:MachineryItemState_StateMachineType
	

		Monitoring

	Status



	0:HasProperty
	Variable
	ScraperActive
	0:Boolean
	0:PropertyType
	

		Monitoring

	Process



	
	
	CleanlinessOfBelt	Comment by Christopher Liehr: Im ScraperType richtig angeordnet?
	
	
	



MachineryItemState is used as defined in OPC 40001-1. It represents a StateMachine that shows the current machine state.
ScraperActive is
[bookmark: _Toc194572964]ConveyorRollType ObjectType Definition
[bookmark: _Toc194572965]Overview
The ConveyorRollType provides ... and is formally defined in Table 52.
[bookmark: _Ref194414024]Table 52 – ConveyorRollType Definition
	Attribute
	Value

	BrowseName
	ConveyorRollType

	IsAbstract
	False

	References
	Node Class
	BrowseName
	DataType
	TypeDefinition
	Other

	Subtype of the 0:BaseObjectType defined in OPC 10000-5

	0:HasProperty
	Variable
	ConveyorRollID
	0:String
	0:PropertyType
	

	0:HasComponent
	Variable
	<BearingTemperature>
	0:Double
	0:AnalogUnitType
	

	0:HasComponent
	Variable
	<BearingRotation>
	0:Double
	0:AnalogUnitType
	

	0:HasComponent
	Variable
	<Vibration>
	0:Double
	0:AnalogUnitType
	

	
	Variable
	<SensorNodeID>
	
	
	

	Conformance Units

	

	



ConveyorRollID is
BearingTemperature is
BearingRotation is
Vibration is
SensorNodeID is

[bookmark: _Ref17993961][bookmark: _Toc18148686][bookmark: _Toc65744342][bookmark: _Toc88555101][bookmark: _Toc88555427][bookmark: _Toc88555521][bookmark: _Toc194572966]Profiles and ConformanceUnits
[bookmark: _Ref16853792][bookmark: _Toc18148698]xyz
[bookmark: _Toc65744348][bookmark: _Toc88555107][bookmark: _Toc88555433][bookmark: _Toc88555527][bookmark: _Toc194572967]Namespaces
[bookmark: _Toc18148699][bookmark: _Toc65744349][bookmark: _Toc88555108][bookmark: _Toc88555434][bookmark: _Toc88555528][bookmark: _Toc194572968]Namespace Metadata
Table 41 defines the namespace metadata for this document. The Object is used to provide version information for the namespace and an indication about static Nodes. Static Nodes are identical for all Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for more details.
The information is provided as Object of type NamespaceMetadataType. This Object is a component of the Namespaces Object that is part of the Server Object. The NamespaceMetadataType ObjectType and its Properties are defined in OPC 10000-5.
The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file. The UANodeSet XML schema is defined in OPC 10000-6.
[bookmark: _Ref16863029][bookmark: _Toc18148733][bookmark: _Toc194403827]Table 53 – NamespaceMetadata Object for this Document
	Attribute
	Value

	BrowseName
	http://opcfoundation.org/UA/<short name>/

	Property
	DataType
	Value

	NamespaceUri
	String
	http://opcfoundation.org/UA/<short name>/

	NamespaceVersion
	String
	1.0

	NamespacePublicationDate
	DateTime
	2021-11-23

	IsNamespaceSubset
	Boolean
	False

	StaticNodeIdTypes
	IdType []
	0

	StaticNumericNodeIdRange
	NumericRange []
	

	StaticStringNodeIdPattern
	String
	



[bookmark: _Toc18148700][bookmark: _Ref56768957]Note: The IsNamespaceSubset Property is set to False as the UaNodeSet XML file contains the complete Namespace. Servers only exposing a subset of the Namespace need to change the value to True.

[bookmark: _Toc65744350][bookmark: _Toc88555109][bookmark: _Toc88555435][bookmark: _Toc88555529][bookmark: _Ref88557879][bookmark: _Toc194572969]Handling of OPC UA Namespaces
Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The Attributes NodeId and BrowseName are identifiers. A Node in the UA AddressSpace is unambiguously identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to unambiguously identify a Node. Different Nodes may have the same BrowseName. They are used to build a browse path between two Nodes or to define a standard Property.
Servers may often choose to use the same namespace for the NodeId and the BrowseName. However, if they want to provide a standard Property, its BrowseName shall have the namespace of the standards body although the namespace of the NodeId reflects something else, for example the EngineeringUnits Property. All NodeIds of Nodes not defined in this document shall not use the standard namespaces.
Table 42 provides a list of mandatory and optional namespaces used in an <title> OPC UA Server.
[bookmark: _Ref16778538][bookmark: _Toc18148734][bookmark: _Toc194403828]Table 54 – Namespaces used in a <title> Server
	NamespaceURI
	Description
	Use

	http://opcfoundation.org/UA/
	Namespace for NodeIds and BrowseNames defined in the OPC UA specification. This namespace shall have namespace index 0.
	Mandatory

	Local Server URI
	Namespace for nodes defined in the local server. This namespace shall have namespace index 1.
	Mandatory

	http://opcfoundation.org/UA/DI/
	Namespace for NodeIds and BrowseNames defined in OPC 10000-100. The namespace index is Server specific.
	Mandatory

	http://opcfoundation.org/UA/Machinery/
	Namespace for NodeIds and BrowseNames defined in OPC UA for Machinery (Error! Reference source not found.). The namespace index is Server specific.
	Mandatory

	http://opcfoundation.org/UA/<short name>/
	Namespace for NodeIds and BrowseNames defined in this document. The namespace index is Server specific.
	Mandatory

	Vendor specific types
	A Server may provide vendor-specific types like types derived from ObjectTypes defined in this document in a vendor-specific namespace.
	Optional

	Vendor specific instances
	A Server provides vendor-specific instances of the standard types or vendor-specific instances of vendor-specific types in a vendor-specific namespace.
It is recommended to separate vendor specific types and vendor specific instances into two or more namespaces.
	Mandatory



Table 43 provides a list of namespaces and their indices used for BrowseNames in this document. The default namespace of this document is not listed since all BrowseNames without prefix use this default namespace.
[bookmark: _Ref16577438][bookmark: _Toc18148735][bookmark: _Toc194403829]Table 55 – Namespaces used in this document
	NamespaceURI
	Namespace Index
	Example

	http://opcfoundation.org/UA/
	0
	0:EngineeringUnits

	http://opcfoundation.org/UA/DI/
	2
	2:DeviceRevision

	http://opcfoundation.org/UA/IA/
	3
	3:BasicStacklightType

	http://opcfoundation.org/UA/Machinery/
	4
	4:MachineIdentificaionType

	http://opcfoundation.org/UA/Mining/General/
	5
	5:MiningEquipmentType



[bookmark: _Toc206519805][bookmark: _Ref216772524][bookmark: _Toc442691955][bookmark: _Ref499807162][bookmark: _Toc500431979][bookmark: _Ref500497556][bookmark: _Toc502913928][bookmark: _Toc65744351][bookmark: _Toc88555110][bookmark: _Toc88555436][bookmark: _Toc88555530][bookmark: _Toc194572970]
(normative)

<Title> Namespace and mappings
[bookmark: _Toc442691956][bookmark: _Toc500431980][bookmark: _Toc65744352]NodeSet and supplementary files for <Title> Information Model

An Information Model is formally defined in an XML file called a NodeSet This file conforms to the standard syntax defined in the Annex “Information Model XML Schema” OPC 10000-6. It can be read and processed by a computer program.
An Information Model is identified by a URI – the so-called NamespaceUri.
A NamespaceUri follows one of these conventions:
	http://opcfoundation.org/UA/<short name>/
	tag:opcfoundation.org,yyyy-MM:UA:<short name>

Where <short name> is described in Error! Reference source not found. and yyyy-MM is the date when the NamespaceUri was first published. NamespaceUris are not network accessible URLs and the text should not suggest they are. The tag URI syntax allows authors to choose a URI that cannot be used as URL by mistake. Note that the date in the tag syntax is not the same as the PublicationDate for the NodeSet. It is set once when the URI is created and never changed.

The Online Reference provides a summary page for every NamespaceUri of released Information Models which has the form:
	https://reference.opcfoundation.org/nodesets?u=<NamespaceUri>

The <Title> Information Model is identified by the following URI:
http://opcfoundation.org/UA/<short name>/
Documentation for the NamespaceUri can be found here.
“here” is a hyperlink to the summary page of the Online Reference.
In the hyperlink, the <NamespaceUri> has to be replaced with the concrete URI for this specification.

The NodeSet associated with this version of specification can be found here:
https://reference.opcfoundation.org/nodesets/?u=<NamespaceUri>&v=<Version>&i=1

The NodeSet associated with the latest version of the specification can be found here:
https://reference.opcfoundation.org/nodesets/?u=<NamespaceUri>&i=1

<NamespaceUri> is the NamespaceUri for the Information Model.

The <Version> is the string in the NamespaceVersion from the Namespace Metadata (see Error! Reference source not found.). This value is also the value of the Version attribute in the NodeSet.

Supplementary files for the <Title> Information Model can be found here:
https://reference.opcfoundation.org/nodesets/?u=<NamespaceUri>&v=<Version>&i=2

The files associated with the latest version of the specification can be found here:
https://reference.opcfoundation.org/nodesets/?u=<NamespaceUri>&i=2

Supplementary files should be provided when appropriate (i.e., IRDI NodeSets or examples)

File Names
NodeIds: 	Opc.Ua.<short name>.NodeIds.csv or <short name>.NodeIds.csv
NodeSet: 	Opc.Ua.<short name>.NodeSet.xml or <short name>.NodeSet.xml;	
Any other files should have a prefix that provides context when the file is downloaded in a browser.

[bookmark: _Toc85097735]Capability Identifier
[bookmark: OLE_LINK16][bookmark: OLE_LINK17][bookmark: OLE_LINK18]ServerCapabilityIdentifiers are defined in OPC 10000-12. They can be used for features, like certain information models, which are likely to be useful during the discovery process. The identifiers shall be short because of length restrictions for fields used in the mDNS specification.
The identifier shall be up to 6 characters. It is recommended to use the <short name> introduced in the guideline, at the beginning of clause 13 if that meets the requirement of up to 6 characters.
Note, that such identifiers are not required. If not needed, this Annex section shall be deleted.
The capability identifier for this document shall be:
<short name>

___________
image1.jpeg




image2.tiff
f/ VDMA

i




image3.emf
Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Application

SCADA

MES

ERP

Device Device Device

Secure 

Communication 

Across the 

Internet

Fast, Non-

Proprietary

Device to 

Device

Control to Device 

Network

Integration

Integration 

with 

ERP and MES

OPC

UA

Clients

OPC

UA

Servers

&

Clients


Microsoft_PowerPoint_Slide.sldx
Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Application

SCADA

MES

ERP

Device

Device

Device

Secure Communication Across the Internet

Fast, Non-Proprietary

Device to Device

Control to Device Network

Integration

Integration with 

ERP and MES





OPC

UA

Clients



OPC

UA

Servers

&

Clients












image4.emf
Reservation

Who

When

First Name

“John”

Last Name

“Smith”

Start

“2:00PM”

End

“4:00PM”

Cancel

Object Nodes 

convey semantics

and structure

Method Nodes 

define complex 

behaviors

Variable Nodes 

provide access to data


Microsoft_Visio_2003-2010_Drawing.vsd
Object


Variable


Method


Text


Reservation


Who


When


First Name
“John”


Last Name
“Smith”


Start
“2:00PM”


End
“4:00PM”


Cancel


Variable Nodes 
provide access to data


Object Nodes 
convey semantics
 and structure


Method Nodes 
define complex 
behaviors



image5.emf
Who

First Name

“John”

Last Name

“Smith”

First Name

[String]

Last Name

[String]

Middle Name

“Jacob”

Instances can 

be extended

Structure and 

semantics can 

be inherited

from other types

ObjectType Nodes

are templates that 

describe the structure 

of an instance

Every Instance Node 

has a 

TypeDefinition Node 

which defines its structure

Semantics: An instance of PersonType represents a human

Structure:  An instance of PersonType has a First Name and a Last Name

BaseObjectType

PersonType


Microsoft_Visio_2003-2010_Drawing1.vsd
ObjectType


Object


Variable


Text


ObjectType


Who


First Name
“John”


Last Name
“Smith”


PersonType


First Name
[String]


Last Name
[String]


Middle Name
“Jacob”


Instances can 
be extended


Structure and 
semantics can 
be inherited
from other types


ObjectType Nodes
are templates that 
describe the structure 
of an instance


Every Instance Node 
has a 
TypeDefinition Node 
which defines its structure


Semantics: An instance of PersonType represents a human
Structure:  An instance of PersonType has a First Name and a Last Name


BaseObjectType



image6.emf
Joe Sam Dogs Cats

Animals

Organizes Organizes HasClassification HasClassification

Kennel #2

Owns

Poodle

Breeds

HasClassification

Farmers

Siamese

HasClassification

Fido

HasBreed

LivesIn

Organizes

Owns

Has 

Classification

Non-

Hierarchical

Breeds

HasBreed

LivesIn

Reference Types  

can be created

from other reference types

They can be used to 

show hierarchies

or just relationships


Microsoft_Visio_2003-2010_Drawing2.vsd
ReferenceType


Object


Text


Asymmetric
Reference


Joe


Sam


Dogs


Cats


Animals


Organizes


Organizes


HasClassification


HasClassification


Kennel #2


Fido


Owns


Poodle


Breeds


HasClassification


Farmers


LivesIn


Siamese


HasClassification


HasBreed


Organizes


Owns


Has Classification


Non-Hierarchical


Breeds


HasBreed


LivesIn


Reference Types  
can be created
 from other reference types


They can be used to 
show hierarchies
 or just relationships



image7.emf
Object Variable Method View

<TypeName> <TypeName> <TypeName>

Instances

Types

Standard 

References

VariableType

ObjectType

DataType ReferenceType

Symmetric

Reference

Asymmetric

Reference

Hierarchical 

Reference

Has

EventSource

Has

Component

HasProperty

HasTypeDefinition

HasSubtype

Has

Interface


Microsoft_Visio_2003-2010_Drawing3.vsd
DataType


Variable


Object


Variable


Method


VariableType


Text


ObjectType


Asymmetric
Reference


VariableType


View


Symmetric
Reference


ObjectType


ReferenceType


<TypeName>


<TypeName>


<TypeName>


Instances


Types


Standard References


Symmetric Reference


Asymmetric Reference


Hierarchical Reference


Has
EventSource


Has
Component


HasProperty


HasTypeDefinition


HasSubtype


Has
Interface



