

VDMA 40250-1

VDMA

ICS 23.140; 35.240.50

OPC UA for Compressed Air Systems – Part 1: Main Control Systems

OPC UA für Compressed Air Systems – Teil 1: Main Control Systems

VDMA 40250-1:2021-09 is identical with OPC 40250-1 (Release 1.00.1)

Document comprises 116 pages

VDMA

Contents

4.1 Introduction to Compressed Air Systems. 22 4.2 Introduction to OPC Unified Architecture 23 5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 42 7.5 AirnetComponentType ObjectType Definition 44 <t< th=""><th>_</th><th></th><th>Page</th></t<>	_		Page
2 Normative references 14 3 Terms, definitions, and conventions 15 3.1 Overview 15 3.2 OPC UA for Compressed Air Systems terms 15 3.3 Abbreviated terms 17 3.4 Conventions used in this document. 18 4 General information to Compressed Air Systems and OPC UA 22 4.1 Introduction to Compressed Air Systems 22 4.2 Introduction to OPC Unified Architecture 23 5.4 Device Identification 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 5.4 Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Airnet Examples 31 6.5 Extending FunctionalGroups 36 6.6 Alarms and Condit			
3 Terms, definitions, and conventions 15 3.1 Overview 15 3.2 OPC UA for Compressed Air Systems terms 15 3.3 Abbreviated terms 17 3.4 Conventions used in this document 18 4 General information to Compressed Air Systems and OPC UA. 22 4.1 Introduction to OPC Unified Architecture 23 5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6.0 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Comp	-	•	
3.1 Overview 15 3.2 OPC UA for Compressed Air Systems terms 15 3.3 Abbreviated terms 17 3.4 Conventions used in this document 18 4 General information to Compressed Air Systems and OPC UA. 22 4.1 Introduction to COmpressed Air Systems 22 4.2 Introduction to OPC Unified Architecture 23 5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification 34 6.5 Alarms and Conditions 36 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compre			
3.2 OPC UA for Compressed Air Systems terms 15 3.3 Abbreviated terms 17 3.4 Conventions used in this document. 18 4 General information to Compressed Air Systems and OPC UA. 22 1.1 Introduction to COmpressed Air Systems. 22 4.1 Introduction to OPC Unified Architecture 23 5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.4 Adding new Components 38 6.5 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administrat	-		
3.3 Abbreviated terms 17 3.4 Conventions used in this document. 18 4 General information to Compressed Air Systems and OPC UA. 22 4.1 Introduction to Compressed Air Systems 22 4.2 Introduction to OPC Unified Architecture 23 5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 5.4 Energy Management 29 5.5 Operation 29 6.6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Syst			
3.4 Conventions used in this document. 18 4 General information to Compressed Air Systems and OPC UA. 22 4.1 Introduction to Compressed Air Systems. 22 4.2 Introduction to OPC Unified Architecture 23 5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Adding new Components 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 <td></td> <td></td> <td></td>			
4 General information to Compressed Air Systems and OPC UA. 22 4.1 Introduction to Compressed Air Systems. 22 4.2 Introduction to OPC Unified Architecture. 23 5 Use cases 29 5.1 Device Identification. 29 5.2 Configuration 29 5.3 Maintenance Management. 29 5.4 Energy Management. 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model. 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification. 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.2 AirnetSrype ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42<			
4.1 Introduction to Compressed Air Systems. 22 4.2 Introduction to OPC Unified Architecture 23 5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 42 <td< td=""><td>3.4</td><td></td><td>-</td></td<>	3.4		-
4.2 Introduction to OPC Unified Architecture 23 5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetComponentsType ObjectType Definition 42 7.5 AirnetComponentType ObjectType Definition 47 <t< td=""><td>4</td><td></td><td></td></t<>	4		
5 Use cases 29 5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetComponentsType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 46 7.6	4.1	Introduction to Compressed Air Systems	22
5.1 Device Identification 29 5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetComponentsType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 44 7.6 MCSType ObjectType Definition 47	4.2	Introduction to OPC Unified Architecture	23
5.2 Configuration 29 5.3 Maintenance Management 29 5.4 Energy Management 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetComponentsType ObjectType Definition 42 7.4 AirnetComponentsType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 47 7.6 MCSType ObjectType Definition 49 <td>5</td> <td>Use cases</td> <td> 29</td>	5	Use cases	29
5.3 Maintenance Management. 29 5.4 Energy Management. 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model. 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 42 7.5 AirnetComponentsType ObjectType Definition 44 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition	5.1	Device Identification	29
5.4 Energy Management. 29 5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model. 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 47 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 47 7.8 ChargingSystemType ObjectType Definition 53	5.2	Configuration	29
5.5 Operation 29 6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 44 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 47 7.8 ChargingSystemType ObjectType Definition 53	5.3	Maintenance Management	29
6 OPC UA for Compressed Air Systems Information Model 30 6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 47 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	5.4	Energy Management	29
6.1 Model Overview 30 6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectType Definition 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetType ObjectType Definition 47 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	5.5	Operation	29
6.2 Compressed air conditions for downstream machines or systems 31 6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsType ObjectType Definition 44 7.4 AirnetComponentsType ObjectType Definition 46 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	6	OPC UA for Compressed Air Systems Information Model	30
6.3 Airnet Examples 31 6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 47 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	6.1	Model Overview	30
6.4 Identification 34 6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 46 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	6.2	Compressed air conditions for downstream machines or systems	31
6.5 Extending FunctionalGroups 35 6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 46 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	6.3	Airnet Examples	31
6.6 Alarms and Conditions 36 6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 46 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	6.4	Identification	
6.7 Adding new Components 38 6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 42 7.5 AirnetComponentsType ObjectType Definition 46 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	6.5	Extending FunctionalGroups	35
6.8 Asset Administration Shell for Compressed Air Systems – Main Control System 39 7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 42 7.5 AirnetComponentsType ObjectType Definition 46 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	6.6	Alarms and Conditions	
7 OPC UA ObjectTypes 40 7.1 CASType ObjectType Definition 40 7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 42 7.5 AirnetComponentsType ObjectType Definition 44 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	6.7	Adding new Components	38
7.1CASType ObjectType Definition407.2AirnetsType ObjectType Definition427.3ComponentsGroupType ObjectType Definition427.4AirnetType ObjectType Definition447.5AirnetComponentsType ObjectType Definition467.6MCSType ObjectType Definition477.7CASComponentType ObjectType Definition497.8ChargingSystemType ObjectType Definition53	6.8	Asset Administration Shell for Compressed Air Systems – Main Control System	39
7.2 AirnetsType ObjectType Definition 42 7.3 ComponentsGroupType ObjectType Definition 42 7.4 AirnetType ObjectType Definition 44 7.5 AirnetComponentsType ObjectType Definition 46 7.6 MCSType ObjectType Definition 47 7.7 CASComponentType ObjectType Definition 49 7.8 ChargingSystemType ObjectType Definition 53	7	OPC UA ObjectTypes	40
7.3ComponentsGroupType ObjectType Definition427.4AirnetType ObjectType Definition447.5AirnetComponentsType ObjectType Definition467.6MCSType ObjectType Definition477.7CASComponentType ObjectType Definition497.8ChargingSystemType ObjectType Definition53	7.1	CASType ObjectType Definition	40
7.4 AirnetType ObjectType Definition	7.2	AirnetsType ObjectType Definition	42
7.5 AirnetComponentsType ObjectType Definition	7.3	ComponentsGroupType ObjectType Definition	42
7.6MCSType ObjectType Definition477.7CASComponentType ObjectType Definition497.8ChargingSystemType ObjectType Definition53	7.4	AirnetType ObjectType Definition	44
7.6MCSType ObjectType Definition477.7CASComponentType ObjectType Definition497.8ChargingSystemType ObjectType Definition53	7.5	AirnetComponentsType ObjectType Definition	46
7.8 ChargingSystemType ObjectType Definition	7.6	MCSType ObjectType Definition	47
7.8 ChargingSystemType ObjectType Definition	7.7		
	7.8		
	7.9		

7.10	ConverterType ObjectType Definition	54
7.11	CoolingSystemType ObjectType Definition	55
7.12	DrainType ObjectType Definition	56
7.13	DryerType ObjectType Definition	57
7.14	FilterType ObjectType Definition	58
7.15	HeatRecoverySystemType ObjectType Definition	58
7.16	ReceiverType ObjectType Definition	59
7.17	SensorType ObjectType Definition	60
7.18	SeparatorType ObjectType Definition	62
7.19	ValveType ObjectType Definition	63
7.20	ElectricalQuantitiesType ObjectType Definition	64
7.21	ElectricalCircuitType ObjectType Definition	65
7.22	FluidQuantitiesType ObjectType Definition	65
7.23	ParticleType ObjectType Definition	66
7.24	FluidCircuitType ObjectType Definition	67
7.25	AnalysisType ObjectType Definition	68
7.26	AnalysesType ObjectType Definition	69
7.27	CalibrationType ObjectType Definition	69
7.28	CASIdentificationType ObjectType Definition	70
7.29	ConfigurationType ObjectType Definition	70
7.30	AirnetConfigurationType ObjectType Definition	70
7.31	MCSConfigurationType ObjectType Definition	71
7.32	CommunicationSettingsType ObjectType Definition	72
7.33	DesignType ObjectType Definition	73
7.34	CompressorDesignType ObjectType Definition	74
7.35	ConverterDesignType ObjectType Definition	75
7.36	DrainDesignType ObjectType Definition	75
7.37	DryerDesignType ObjectType Definition	76
7.38	FilterDesignType ObjectType Definition	76
7.39	ReceiverDesignType ObjectType Definition	77
7.40	SensorDesignType ObjectType Definition	77
7.41	SeparatorDesignType ObjectType Definition	78
7.42	ValveDesignType ObjectType Definition	78
7.43	EventsType ObjectType Definition	79
7.44	MaintenanceType ObjectType Definition	80
7.45	OperationalType ObjectType Definition	81
7.46	AirnetOperationalType ObjectType Definition	82
7.47	CompressorOperationalType ObjectType Definition	83
7.48	ConverterOperationalType ObjectType Definition	85

7.49	DrainOperationalType ObjectType Definition	85			
7.50	DryerOperationalType ObjectType Definition86				
7.51	ValveOperationalType ObjectType Definition	88			
7.52	StatisticsType ObjectType Definition	88			
7.53	CompressorStatisticsType ObjectType Definition	89			
8	OPC UA DataTypes	90			
8.1	FilterClassDataType	90			
8.2	SensorTechnologyOptionSet	90			
8.3	CompressorTypeEnum	91			
8.4	ConverterTypeEnum	91			
8.5	DisplacementTypeEnum	92			
8.6	DrainTypeEnum	92			
8.7	DryerTypeEnum	93			
8.8	FilterClassEnum	93			
8.9	FilterTypeEnum	94			
8.10	FluidTypeEnum	94			
8.11	HealthStateEnum	95			
8.12	AirnetHealthStateEnum	95			
8.13	IntegratedStateEnum	95			
8.14	AirnetIntegratedStateEnum	96			
8.15	IpVersionEnum	96			
8.16	LubricationTypeEnum	97			
8.17	OperatingStateEnum	97			
8.18	AirnetOperatingStateEnum	98			
8.19	CompressorOperatingStateEnum	99			
8.20	DryerOperatingStateEnum	100			
8.21	ReceiverTypeEnum	101			
8.22	SensorTypeEnum	102			
8.23	SeparatorTypeEnum	102			
8.24	ValveTypeEnum	103			
9	Profiles and ConformanceUnits	104			
9.1	Conformance Units	104			
9.2	Facets and Profiles	105			
10	Namespaces	112			
10.1	Namespace Metadata	112			
10.2	Handling of OPC UA Namespaces	113			
Annex	A (normative) OPC UA for Compressed Air Systems Namespace and mappings	114			
Annex	B (normative) Edge Cases for Component and Airnet Handling	115			
Annex	C (informative) Bibliography	116			

Figures

Figure 1 – Compressed Air System	22
Figure 2 – The Scope of OPC UA within an Enterprise	23
Figure 3 – A Basic Object in an OPC UA Address Space	24
Figure 4 – The Relationship between Type Definitions and Instances	25
Figure 5 – Examples of References between Objects	26
Figure 6 – The OPC UA Information Model Notation	27
Figure 8 – All ObjectTypes	30
Figure 8 – Simple Airnet	31
Figure 9 – Two Simple Airnets	32
Figure 10 – Connected Airnets	32
Figure 11 – Overlapping Airnets	33
Figure 12 – Extending FunctionalGroups	35
Figure 13 – Alarms and Conditions	37
Figure 14 – Adding New Component Types	
Figure 15 – I4.0 Component Consisting of Asset and Administration Shell	
Figure 16 – CASType Illustration	40
Figure 17 – CASType Components Reference Instantiation Example	41
Figure 18 – ComponentsGroupType Illustration	42
Figure 19 – AirnetType Illustration	44
Figure 20 – Airnet Components Example	45
Figure 21 – MCSType Illustration	47
Figure 22 – CASComponentType Illustration	49
Figure 23 – CompressorType Illustration	53
Figure 24 – ConverterType Illustration	54
Figure 25 – DryerType Illustration	56
Figure 26 – DryerType Illustration	57
Figure 27 – FilterType Illustration	58
Figure 28 – ReceiverType Illustration	59
Figure 29 – SensorType Illustration	60
Figure 30 – SeparatorType Illustration	62
Figure 31 – ValveType Illustration	63
Figure 32 – CompressorOperationalType State Machine Illustration	84
Figure 33 – DryerOperationalType Adsorption Dryer State Machine Illustration	86
Figure 34 – DryerOperationalType Refrigerant Dryer State Machine Illustration	87
Figure 35 – DryerOperationalType Membrane Dryer State Machine Illustration	87
Figure 36 – OperatingState State Machine Illustration	97
Figure 37 – AirnetOperatingState State Machine Illustration	
Figure 38 – CompressorOperatingState State Machine Illustration	99
Figure 39 – DryerOperatingState Refrigerant Dryer State Machine Illustration	100
Figure 40 – DryerOperatingState Membrane Dryer State Machine Illustration	100
Figure 41 – DryerOperatingState Adsorption Dryer State Machine Illustration	101

Tables

Table 1 – Examples of DataTypes	. 18
Table 2 – Type Definition Table	
Table 3 – Examples of Other Characteristics	. 19
Table 4 – Common Node Attributes	. 20
Table 5 – Common Object Attributes	. 20
Table 6 – Common Variable Attributes	. 21
Table 7 – Common VariableType Attributes	. 21
Table 8 – Common Method Attributes	. 21
Table 9 – DeviceClass, BrowseName and GroupName for CASParts	. 34
Table 10 – Severity Categorization	
Table 11 – CASType Definition	. 40
Table 12 – CASType Attribute values for child Nodes	. 40
Table 13 – AirnetsType Definition	. 42
Table 14 – AirnetsType Attribute values for child Nodes	. 42
Table 15 – ComponentsGroupType Definition	. 43
Table 16 – ComponentsGroupType Attribute values for child Nodes	. 43
Table 17 – AirnetType Definition	. 44
Table 18 – AirnetType Attribute values for child Nodes	. 45
Table 19 – AirnetComponentsType Definition	. 46
Table 20 – AirnetComponentsType Attribute values for child Nodes	. 46
Table 21 – MCSType Definition	. 47
Table 22 – MCSType Attribute values for child Nodes	. 48
Table 23 – CASComponentType Definition	. 50
Table 24 – CASComponentType Additional Subcomponents	. 51
Table 25 – CASComponentType Attribute values for child Nodes	
Table 26 – ChargingSystemType Definition	. 53
Table 27 – CompressorType Definition	. 54
Table 28 – CompressorType Attribute values for child Nodes	
Table 29 – ConverterType Definition	
Table 30 – CoolingSystemType Definition	. 55
Table 31 – DrainType Definition	. 56
Table 32 – DrainType Attribute values for child Nodes	. 56
Table 33 – DryerType Definition	
Table 34 – FilterType Definition	
Table 35 – HeatRecoverySystemType Definition	
Table 36 – ReceiverType Definition	
Table 37 – SensorType Definition	
Table 38 – SensorType Additional Subcomponents	
Table 39 – SensorType Attribute values for child Nodes	
Table 40 – SeparatorType Definition	
Table 41 – SeparatorType Attribute values for child Nodes	
Table 42 – ValveType Definition	
Table 43 – ElectricalQuantitiesType Definition	
Table 44 – ElectricalQuantitiesType Attribute values for child Nodes	
Table 45 – ElectricalCircuitType Definition	
Table 46 – ElectricalCircuitType Attribute values for child Nodes	

Table 47 – FluidQuantitiesType Definition	65
Table 48 – FluidQuantitiesType Attribute values for child Nodes	66
Table 49 – ParticleType Definition	66
Table 50 – ParticleType Attribute values for child Nodes	66
Table 51 – FluidCircuitType Definition	67
Table 52 – FluidCircuitType Attribute values for child Nodes	67
Table 53 – AnalysisType Definition	68
Table 54 – AnalysisType Attribute values for child Nodes	68
Table 55 – Trigger Method AddressSpace Definition	68
Table 56 – AnalysesType Definition	69
Table 57 – AnalysesType Attribute values for child Nodes	69
Table 58 – CalibrationType Definition	69
Table 59 – CalibrationType Attribute values for child Nodes	69
Table 60 – CASIdentificationType Definition	70
Table 61 – ConfigurationType Definition	70
Table 62 – AirnetConfigurationType Definition	
Table 63 – AirnetConfigurationType Attribute values for child Nodes	71
Table 64 – MCSConfigurationType Definition	71
Table 65 – MCSConfigurationType Attribute values for child Nodes	71
Table 66 – LoadConfigurationFile Method AddressSpace Definition	72
Table 67 – SaveConfigurationFile Method AddressSpace Definition	
Table 68 – CommunicationSettingsType Definition	
Table 69 – CommunicationSettingsType Attribute values for child Nodes	
Table 70 – DesignType Definition	
Table 71 – DesignType Attribute values for child Nodes	
Table 72 – CompressorDesignType Definition	
Table 73 – CompressorDesignType Attribute values for child Nodes	
Table 74 – ConverterDesignType Definition	
Table 75 – ConverterDesignType Attribute values for child Nodes	
Table 76 – DrainDesignType Definition	
Table 77 – DrainDesignType Attribute values for child Nodes.	
Table 78 – DryerDesignType Definition	
Table 79 – DryerDesignType Attribute values for child Nodes	
Table 80 – FilterDesignType Definition	
Table 81 – FilterDesignType Attribute values for child Nodes	
Table 82 – ReceiverDesignType Definition	
Table 83 – ReceiverDesignType Attribute values for child Nodes Table 83 – ReceiverDesignType Attribute values for child Nodes	
Table 84 – SensorDesignType Definition	
Table 85 – SensorDesignType Attribute values for child Nodes Table 85 – SensorDesignType Attribute values for child Nodes	
Table 86 – SeparatorDesignType Definition Table 97 – SeparatorDesignType Attribute veloces for abild Nodes	
Table 87 – SeparatorDesignType Attribute values for child Nodes Table 87 – SeparatorDesignType Attribute	
Table 88 – ValveDesignType Definition	
Table 89 – ValveDesignType Attribute values for child Nodes Table 89 – ValveDesignType Attribute values for child Nodes	
Table 90 – EventsType Definition	
Table 91 – EventsType Attribute values for child Nodes Table 92 – EventsType Attribute values for child Nodes	
Table 92 – EventsType States and Severities for child Nodes Table 92 – Maintenant Table 9	
Table 93 – MaintenanceType Definition	80

Table 94 – MaintenanceType Attribute values for child Nodes	
Table 95 – OperationalType Definition	. 81
Table 96 – OperationalType Attribute values for child Nodes	. 81
Table 97 – AirnetOperationalType Definition	. 82
Table 98 – AirnetOperationalType Attribute values for child Nodes	. 83
Table 99 – CompressorOperationalType Definition	. 83
Table 100 – CompressorOperationalType Attribute values for child Nodes	. 84
Table 101 – ConverterOperationalType Definition	. 85
Table 102 – ConverterOperationalType Attribute values for child Nodes	. 85
Table 103 – DrainOperationalType Definition	. 85
Table 104 – DrainOperationalType Attribute values for child Nodes	. 85
Table 105 – DrainTest Method AddressSpace Definition	. 85
Table 106 – DryerOperationalType Definition	. 86
Table 107 – DryerOperationalType Attribute values for child Nodes	. 88
Table 108 – ValveOperationalType Definition	. 88
Table 109 – ValveOperationalType Attribute values for child Nodes	
Table 110 – StatisticsType Definition	. 89
Table 111 – StatisticsType Attribute values for child Nodes	. 89
Table 112 – CompressorStatisticsType Definition	. 89
Table 113 – CompressorStatisticsType Attribute values for child Nodes	
Table 114 – FilterClassDataType Structure	. 90
Table 115 – FilterClassDataType Definition	
Table 116 – SensorTechnologyOptionSet Values	. 90
Table 117 – SensorTechnologyOptionSet Definition	. 90
Table 118 – CompressorTypeEnum Items	. 91
Table 119 – CompressorTypeEnum Definition	. 91
Table 120 – ConverterTypeEnum Items	
Table 121 – ConverterTypeEnum Definition	. 91
Table 122 – DisplacementTypeEnum Items	. 92
Table 123 – DisplacementTypeEnum Definition	
Table 124 – DrainTypeEnum Items	. 92
Table 125 – DrainTypeEnum Definition	. 92
Table 126 – DryerTypeEnum Items	. 93
Table 127 – DryerTypeEnum Definition	. 93
Table 128 – FilterClassEnum Items	. 93
Table 129 – FilterClassEnum Definition	. 94
Table 130 – FilterTypeEnum Items	. 94
Table 131 – FilterTypeEnum Definition	. 94
Table 132 – FluidTypeEnum Items	. 94
Table 133 – FluidTypeEnum Definition	. 94
Table 134 – HealthStateEnum Items	. 95
Table 135 – HealthStateEnum Definition	. 95
Table 136 – AirnetHealthStateEnum Items	. 95
Table 137 – AirnetHealthStateEnum Definition	
Table 138 – IntegratedStateEnum Items	
Table 139 – IntegratedStateEnum Definition	
Table 140 – AirnetIntegratedStateEnum Items	. 96

Table 141 – AirnetIntegratedStateEnum Definition	
Table 142 – IpVersionEnum Items	96
Table 143 – IpVersionEnum Definition	
Table 144 – LubricationTypeEnum Items	97
Table 145 – LubricationTypeEnum Definition	
Table 146 – OperatingStateEnum Items	
Table 147 – OperatingStateEnum Definition	
Table 148 – AirnetOperatingStateEnum Items	
Table 149 – AirnetOperatingStateEnum Definition	
Table 150 – CompressorOperatingStateEnum Items	
Table 151 – CompressorOperatingStateEnum Definition	
Table 152 – DryerOperatingStateEnum Items	
Table 153 – DryerOperatingStateEnum Definition	
Table 154 – ReceiverTypeEnum Items	
Table 155 – ReceiverTypeEnum Definition	
Table 156 – SensorTypeEnum Items	
Table 157 – SensorTypeEnum Definition	
Table 158 – SeparatorTypeEnum Items	
Table 159 – SeparatorTypeEnum Definition	
Table 160 – ValveTypeEnum Items	
Table 161 – ValveTypeEnum Definition	
Table 162 – Conformance Units for OPC UA for Compressed Air Systems	
Table 163 – Facet and Profile URIs for OPC UA for Compressed Air Systems	
Table 164 – CAS Base Analyses Server Facet	
Table 165 – CAS Advanced Analyses Server Facet	
Table 166 – CAS Base Configuration Server Facet	
Table 167 – CAS Advanced Configuration Server Facet	
Table 168 – CAS Base Maintenance Management Server Facet	
Table 169 – CAS Advanced Maintenance Management Server Facet	
Table 170 – CAS Energy Management Server Facet	
Table 171 – CAS Operation Server Facet	
Table 172 – CAS Base Server Profile	
Table 173 – CAS Advanced Server Profile	
Table 174 – CAS Maintenance Management Server Profile	
Table 175 – CAS Energy Management Server Profile	
Table 176 – CAS Dynamic Server Profile	
Table 177 – CAS Full Server Profile	110
Table 178 – CAS Base Client Profile	110
Table 179 – CAS Advanced Client Profile	111
Table 180 – CAS Dynamic Client Profile	111
Table 181 – CAS Dynamic Client Profile	
Table 182 – NamespaceMetadata Object for this Document	
Table 183 – Namespaces used in a OPC UA for Compressed Air Systems Server	
Table 184 – Namespaces used in this document	

OPC Foundation / VDMA

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

- This document is provided "as is" by the OPC Foundation and VDMA.
- Right of use for this specification is restricted to this specification and does not grant rights of use for referred documents.
- Right of use for this specification will be granted without cost.
- This document may be distributed through computer systems, printed or copied as long as the content remains unchanged and the document is not modified.
- OPC Foundation and VDMA do not guarantee usability for any purpose and shall not be made liable for any case using the content of this document.
- The user of the document agrees to indemnify OPC Foundation and VDMA and their officers, directors and agents harmless from all demands, claims, actions, losses, damages (including damages from personal injuries), costs and expenses (including attorneys' fees) which are in any way related to activities associated with its use of content from this specification.
- The document shall not be used in conjunction with company advertising, shall not be sold or licensed to any party.
- The intellectual property and copyright is solely owned by the OPC Foundation and VDMA.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC or VDMA specifications may require use of an invention covered by patent rights. OPC Foundation or VDMA shall not be responsible for identifying patents for which a license may be required by any OPC or VDMA specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. OPC or VDMA specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OPC FOUDATION NOR VDMA MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OPC FOUNDATION NOR VDMA BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation, 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The combination of VDMA and OPC Foundation shall at all times be the sole entities that may authorize developers, suppliers and sellers of hardware and software to use certification marks, trademarks or other special designations to indicate compliance with these materials as specified within this document. Products developed using this specification may claim compliance or conformance with this specification if and only if the software satisfactorily meets the certification requirements set by VDMA or the OPC Foundation. Products that do not meet these requirements may claim only that the product was based on this specification and must not claim compliance or conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of Germany.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior understanding or agreement (oral or written) relating to, this specification.

Foreword

The OPC specifications contain OPC UA Companion Specifications of several industry sectors and are developed by members of VDMA and/or the OPC Foundation. OPC UA is a machine to machine communication technology to transmit characteristics of products (e.g. manufacturer name, device type or components) and process data (e.g. temperatures, pressures or feed rates). To enable vendor unspecific interoperability the description of product characteristics and process data has to be standardized utilizing technical specifications, the OPC UA companion specifications.

Note: In this Companion Specification, the "product" described is a system, the compressed air system. It is not intended to use the described components such as compressors or dryers outside the context of a compressed air system.

Revision 1.00.1 Highlights

Compared with previous versions, the following changes have been made:

Summary	Resolution	
OPC 40250-1 1.0.0	Initial release	
OPC 40250-1 1.00.1 (identical with VDMA 40250-1:2021-09)	 Object node "ns=1;i=5033" is defined in nodeset but has no parent. This is an orphan node and has been deleted. The Variable 0:DefaultInstanceBrowseName in the ObjectType AirnetsType had the ModellingRule "-". To avoid validation errors when using the NodeSetValidator, the value of the cell was deleted. Nodes Airnets and 4:Components in the ObjectType CASType had the ModellingRule Mandatory in NodeSet, while the Document had the ModelingRule Optional. NodeSet has been adapted accordingly. Nodes listed below had AccessLevel 3 in NodeSet, while the Document had the AccessLevel 1. NodeSet was adjusted accordingly. Nodes: 3:StartTime in ObjectType FluidQuantitiesType 3:ResetCondition in ObjectType StatisticsType 3:StartTime in ObjectType StatisticsType 3:StartTime in ObjectType CastisticsType AccessLevel 3. NodeSet was adjusted accordingly. Nodes: ActiveAirnet in ObjectType CastisticsType 	

VDMA Compressors, Compressed Air and Vacuum Technology

The VDMA represents around 3300 German and European companies in the mechanical engineering industry. The industry represents innovation, export orientation, medium-sized companies and employs around four million people in Europe, more than one million of them in Germany.

In the VDMA association the industry-specific trade association Compressors, Compressed Air and Vacuum Technology represents the economic and technical interests of around 80 German manufacturers vis-à-vis customers and buyer organizations, the public, national and international authorities, and other business circles. Our three specialist departments are Process Compressors, Compressed Air and Vacuum Technology. The specialist department Compressed Air Technology is dedicated to this specification.

The objective of this industry-driven platform is to support the compressed air industry through a wide spectrum of activities and services such as standardization, statistics, marketing, public relations, trade fair policy, networking events and representation of interests.

Under the auspices of VDMA, a companion specification for compressed air is developed by leading compressed air manufacturers and users within the "VDMA OPC Compressed Air Systems Initiative".

OPC Foundation

OPC is the interoperability standard for the secure and reliable exchange of data and information in the industrial automation space and in other industries. It is platform independent and ensures the seamless flow of information among devices from multiple vendors. The OPC Foundation is responsible for the development and maintenance of this standard.

OPC UA is a platform independent service-oriented architecture that integrates all the functionality of the individual OPC Classic specifications into one extensible framework. This multi-layered approach accomplishes the original design specification goals of:

- Platform independence: from an embedded microcontroller to cloud-based infrastructure
- Secure: encryption, authentication, authorization and auditing
- Extensible: ability to add new features including transports without affecting existing applications
- Comprehensive information modelling capabilities: for defining any model from simple to complex

1 Scope

The OPC UA Compressed Air Systems (CAS) Companion Specification includes a description of a system and a basic description of its components regarding a Compressed Air System. Main scope of this specification is the communication between the *Main Control System* and the higher-level manufacturing system(s). More specific, it is the transport of condition data of a CAS vertically into higher level manufacturing systems (MES; etc.) for information and monitoring purposes and to set basic parameters regarding the target values of the respective CAS. The description of the CAS and its components is focused on selected use cases, e. g. device identification, configuration, maintenance management, energy management, and operation.

This Companion Specification is not intended to provide viable representations for components such as compressors or dryers outside the context of a compressed air system. It is not intended to use parts of this Companion Specification outside the context of a compressed air system. Particularly, it is not intended to use the components in the context of machine-to-machine communication.

Note: The focus lies on the system which the MCS represents. The MCS communicates with other machines outside of this system. It matches the demand of several users with the compressed air generation by controlling the components especially the compressors of that compressed air system. Therefore, this Companion Specification cannot be directly compared with a Companion Specification for direct machine to machine communication where the component is directly integrated in another machine or process like the Companion Specification for pumps, machine tools, etc.

2 Normative references

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

http://www.opcfoundation.org/UA/Part2/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-8, OPC Unified Architecture - Part 8: Data Access

http://www.opcfoundation.org/UA/Part8/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and Conditions http://www.opcfoundation.org/UA/Part9/

- OPC 10000-100, OPC Unified Architecture Part 100: Device Information Model http://www.opcfoundation.org/UA/Part100/
- OPC 10000-200, OPC Unified Architecture Part 200: Industrial Automation http://www.opcfoundation.org/UA/Part200/
- OPC 40001-1, OPC UA for Machinery Part 1: Basic Building Blocks http://www.opcfoundation.org/UA/Machinery/

IEC 60050, International Electrotechnical Vocabulary

ISO 8573-1:2010-04, Compressed air - Part 1: Contaminants and purity classes

ISO 11011:2013, Compressed air — Energy efficiency — Assessment

ISO 50001, Energy management systems - Requirements with guidance for use

ISO 80000:2009, Quantities and units

NAMUR NE 107:2017-04-10, Self-monitoring and diagnosis of field devices

Details of the Asset Administration Shell – Part 1: The exchange of information between partners in the value chain of Industrie 4.0

3 Terms, definitions, and conventions

3.1 Overview

It is assumed that basic concepts of OPC UA information modelling, OPC Unified Architecture - Part 100, and OPC UA for Machinery - Part 1 are understood in this specification. This specification will use these concepts to describe the OPC UA for Compressed Air Systems Information Model. For the purposes of this document, the terms and definitions given in OPC 10000-1, OPC 10000-3, OPC 10000-4, OPC 10000-5, OPC 10000-7, OPC 10000-100, OPC 40001-1, as well as the following apply.

Note that OPC UA terms and terms defined in this specification are *italicized* in the specification.

3.2 OPC UA for Compressed Air Systems terms

3.2.1 Airnet

Piping and all *Components* between at least two distinct points, the inputs and outputs of the *Airnet*, in a *Compressed Air System*.

Note 1 to entry: A *Component* can be connected to multiple *Airnets*.

Note 2 to entry: Airnets may touch or overlap each other.

Note 3 to entry: For examples on how Airnets can be used in the context of this specification see chapter 6.

3.2.2 CASPart

Identifiable and browsable element in a Compressed Air System.

Note 1 to entry: CASParts defined in this specification are: Airnet, all Components, Main Control System.

3.2.3 Component

CASPart that serves a particular purpose in compressed air generation, treatment, measurement, or storage.

Note 1 to entry: Components defined in this specification are: Charging System, Compressor, Condensate Drain, Condensate Separator, Converter, Cooling System, Dryer, Filter, Heat Recovery System, Receiver, Sensor.

Note 2 to entry: A Component may be connected to no, one, or more than one Airnet.

3.2.4 Compressed Air System

System that generates compressed air, consists of *Components* and at least one *Airnet*, and is commonly equipped with one *Main Control System*.

3.2.5 ComponentClass

Specific type of a *Component* and value of the ComponentClass *Variable* of an instance of the *FunctionalGroup* Design of a *Component*.

EXAMPLE 1 The compressor C1 is of the *ComponentClass* Axial turbo compressor.

EXAMPLE 2 The filter F1 is of the *ComponentClass* Activated carbon filter.

3.2.6 Customer Distribution Point

Connection point of a *Compressed Air System* to subsequent machines or systems.

Note 1 to entry: Usually the Customer Distribution Point is located at one of the outlets of an Airnet.

Note 2 to entry: The *Customer Distribution Point* provides *Variables* and/or *Objects* which describe the conditions of the compressed air.

3.2.7 DeviceClass

Specific class of a *CASPart* and value of the DeviceClass *Property* of an instance of the *FunctionalGroup* Identification of a *CASPart*.

Note 1 to entry: Available *DeviceClasses* for *CASPart* of this specification are listed in Table 9.

EXAMPLE 1 The compressor C1 is of the *DeviceClass* Compressor.

EXAMPLE 2 The filter F1 is of the *DeviceClass* Filter.

3.2.8 FunctionalGroup

Instance of the FunctionalGroupType or one of its subtypes.

Note 1 to entry: In this specification, *FunctionalGroup* usually refers to an instance of a *Compressed Air System* specific *ObjectType* like OperationalType, AnalysesType, or DesignType.

EXAMPLE 1 The compressor C1 has the *FunctionalGroups* Identification, Design, and Operational.

3.2.9 GroupName

BrowseName of instances of the *OptionalPlaceholder Object* <ComponentsGroup> of instances of the *ObjectType* ComponentsGroupType.

Note 1 to entry: Available *GroupNames* for part groups of this specification are listed in Table 9.

EXAMPLE 1 The Object for organizing all compressors in this Compressed Air System uses the GroupName Compressors.

EXAMPLE 2 The Object for organizing all Airnets in this Compressed Air System uses the GroupName Airnets.

3.2.10 Integrated [Component]

A Component is Integrated if the Main Control System has control over the generation or treatment of compressed air.

Note 1 to entry: A compressor is Integrated if the Main Control System has control over the loaded state.

Note 2 to entry: The Main Control System can switch a Component between the two states Integrated and Isolated.

3.2.11 Isolated [Component]

A Component is Isolated if the Main Control System has no control over the generation or treatment of compressed air.

Note 1 to entry: A Component is Isolated if the Main Control System does not control the loaded state.

Note 2 to entry: The Main Control System can switch a Component between the two states Integrated and Isolated.

3.2.12 Main Control System

CASPart that controls all *Components* and *Airnets* simultaneously, represents the *Compressed Air System*, and serves for communication between the *Components* and higher-level systems.

3.2.13 Main Function [of a Component]

The actual main function of *Components* is not specified in this specification. The following examples of *Main Functions* do not imply the actual function of the referenced *Component*.

EXAMPLE 1 Charging system: to keep pressure upstream above a set minimum pressure or within a set pressure range

EXAMPLE 2	Compressor: to deliver compressed air into the piping with an expected volume flow and at an expected pressure
EXAMPLE 3	Condensate drain: to remove condensate from the compressed air piping or a condensate storage to outside the pressure system
EXAMPLE 4	Condensate separator: to separate the hydrocarbon contents from the condensate to create a clean condensate that can easily be disposed of
EXAMPLE 5	Converter: to eliminates hydrocarbons from the compressed air stream to create class 1 (and better) oil free air
EXAMPLE 6	Cooling system: to reduce the compressed air temperature to a desired level
EXAMPLE 7	Dryer: to remove moisture from compressed air and dry compressed air to a pressure dew point below the required value
EXAMPLE 8	Filter: to remove particles and aerosols from the compressed air flow
EXAMPLE 9	Heat recovery system: Main function: to heat up a material or substance flow by using the heat generated by the compressed air system
EXAMPLE 10	Receiver: to store compressed air and provide a buffer
EXAMPLE 11	Sensor: to measure specific parameters in the compressed air system and provide the data

3.2.14 Quantity

A *Variable* representing physical measurements performed by a sensor, or calculations performed by a *CASPart* or the *Main Control System* to simulate a physical measurement.

Note 1 to entry: A physical quantity may be measured by an external sensor but is assigned to a specific CASPart.

Note 2 to entry: The measuring sensor may be integrated into the CASPart.

Note 3 to entry: A calculation performed on the *Main Control System* which is used by a *Component* shall be assigned to that *Component*.

- EXAMPLE 1 A temperature *Quantity* is measured by an internal sensor of a compressor at its outlet.
- EXAMPLE 2 A pressure *Quantity* is measured by an external sensor at the inlet and outlet of a filter.
- EXAMPLE 3 The isentropic efficiency of a compressor is a *Quantity* which is calculated by the *Main Control System* but assigned to the compressor.

3.2.15 Requirements [of an Airnet]

The actual requirements of an *Airnet* are not specified in this specification. The following examples of *Requirements* do not imply the actual requirements of an *Airnet*.

- EXAMPLE 1 The Airnet pressure shall be within range.
- EXAMPLE 2 The dew point shall be within range.

EXAMPLE 3 The volume flow rate shall be within range.

3.2.16 Unavailable [Compressor]

A compressor is Unavailable if it cannot be Integrated and controlled by the Main Control System.

Note 1 to entry: The Main Control System cannot switch a compressor from Unavailable to any other state.

EXAMPLE 1 A compressor in an error state may be *Unavailable*.

3.3 Abbreviated terms

- CAS Compressed Air System
- HOC Heat of Compression Dryer
- KPI key performance indicator
- MCS Main Control System
- VSD Variable Speed Drive

3.4 Conventions used in this document

3.4.1 Conventions for Node descriptions

Node definitions are specified using tables (see Table 2).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the *ReferenceType* name, the *BrowseName* of the *TargetNode* and its *NodeClass*.

- If the *TargetNode* is a component of the *Node* being defined in the table the *Attributes* of the composed *Node* are defined in the same row of the table.
- The DataType is only specified for Variables; "[<number>]" indicates a single-dimensional array, for multi-dimensional arrays the expression is repeated for each dimension (e.g. [2][3] for a two-dimensional array). For all arrays the ArrayDimensions is set as identified by <number> values. If no <number> is set, the corresponding dimension is set to 0, indicating an unknown size. If no number is provided at all the ArrayDimensions can be omitted. If no brackets are provided, it identifies a scalar DataType and the ValueRank is set to the corresponding value (see OPC 10000-3). In addition, ArrayDimensions is set to null or is omitted. If it can be Any or ScalarOrOneDimension, the value is put into "{<value>}", so either "{Any}" or "{ScalarOrOneDimension}" and the ValueRank is set to the corresponding value (see OPC 10000-3) and the ArrayDimensions is set to null or is omitted. Examples are given in Table 1.

Notation	Data- Type	Value- Rank	Array- Dimensions	Description
0:Int32	0:Int32	-1	omitted or null	A scalar Int32.
0:Int32[]	0:Int32	1	omitted or {0}	Single-dimensional array of Int32 with an unknown size.
0:Int32[][]	0:Int32	2	omitted or {0,0}	Two-dimensional array of Int32 with unknown sizes for both dimensions.
0:Int32[3][]	0:Int32	2	{3,0}	Two-dimensional array of Int32 with a size of 3 for the first dimension and an unknown size for the second dimension.
0:Int32[5][3]	0:Int32	2	{5,3}	Two-dimensional array of Int32 with a size of 5 for the first dimension and a size of 3 for the second dimension.
0:Int32{Any}	0:Int32	-2	omitted or null	An Int32 where it is unknown if it is scalar or array with any number of dimensions.
0:Int32{ScalarOrOneDimension}	0:Int32	-3	omitted or null	An Int32 where it is either a single-dimensional array or a scalar.

Table 1 -	 Examples 	of DataTypes
-----------	------------------------------	--------------

- The TypeDefinition is specified for *Objects* and *Variables*.
- The TypeDefinition column specifies a symbolic name for a *NodeId*, i.e. the specified *Node* points with a *HasTypeDefinition Reference* to the corresponding *Node*.
- The ModellingRule of the referenced component is provided by specifying the symbolic name of the rule in the ModellingRule column. In the AddressSpace, the Node shall use a HasModellingRule Reference to point to the corresponding ModellingRule Object.

If the *NodeId* of a *DataType* is provided, the symbolic name of the *Node* representing the *DataType* shall be used.

Note that if a symbolic name of a different namespace is used, it is prefixed by the *NamespaceIndex* (see 3.4.2.2).

Nodes of all other *NodeClasses* cannot be defined in the same table; therefore only the used *ReferenceType*, their *NodeClass* and their *BrowseName* are specified. A reference to another part of this document points to their definition.

Table 2 illustrates the table. If no components are provided, the DataType, TypeDefinition and ModellingRule columns may be omitted and only a Comment column is introduced to point to the *Node* definition.

Attribute	Value				
Attribute name	Attribute value. If it is an optional Attribute that is not set "" will be used.				
References	NodeClass	BrowseName	DataType	TypeDefinition	Other
ReferenceType name	NodeClass of the TargetNode.	BrowseName of the target Node. If the Reference is to be instantiated by the server, then the value of the target Node's BrowseName is "".	DataType of the referenced Node, only applicable for Variables.	<i>TypeDefinition</i> of the referenced <i>Node</i> , only applicable for <i>Variables</i> and <i>Objects</i> .	Additional characteristics of the <i>TargetNode</i> such as the <i>ModellingRule</i> or <i>AccessLevel</i> .

Table 2 – Type Definition Table

Components of *Nodes* can be complex that is containing components by themselves. The *TypeDefinition*, *NodeClass* and *DataType* can be derived from the type definitions, and the symbolic name can be created as defined in 3.4.3.1. Therefore, those containing components are not explicitly specified; they are implicitly specified by the type definitions.

The Other column defines additional characteristics of the Node. Examples of characteristics that can appear in this column are show in Table 3.

Name	Short Name	Description	
0:Mandatory	М	The Node has the Mandatory ModellingRule.	
0:Optional	0	The Node has the Optional ModellingRule.	
0:MandatoryPlaceholder	MP	The Node has the MandatoryPlaceholder ModellingRule.	
0:OptionalPlaceholder	OP	The Node has the OptionalPlaceholder ModellingRule.	
ReadOnly	RO	The Node AccessLevel has the CurrentRead bit set but not the CurrentWrite bit.	
ReadWrite	RW	The Node AccessLevel has the CurrentRead and CurrentWrite bits set.	
WriteOnly	WO	The Node AccessLevel has the CurrentWrite bit set but not the CurrentRead bit.	

Table 3 – Examples of Other Characteristics

If multiple characteristics are defined they are separated by commas. The name or the short name may be used.

3.4.2 Nodelds and BrowseNames

3.4.2.1 Nodelds

The *Nodelds* of all *Nodes* described in this standard are only symbolic names. Annex A defines the actual *Nodelds*.

The symbolic name of each *Node* defined in this document is its *BrowseName*, or, when it is part of another *Node*, the *BrowseName* of the other *Node*, a ".", and the *BrowseName* of itself. In this case "part of" means that the whole has a *HasProperty* or *HasComponent Reference* to its part. Since all *Nodes* not being part of another *Node* have a unique name in this document, the symbolic name is unique.

The *NamespaceUri* for all *Nodelds* defined in this document is defined in Annex A. The *NamespaceIndex* for this *NamespaceUri* is vendor-specific and depends on the position of the *NamespaceUri* in the server namespace table.

Note that this document not only defines concrete *Nodes*, but also requires that some *Nodes* shall be generated, for example one for each *Session* running on the *Server*. The *Nodelds* of those *Nodes* are *Server*-specific, including the namespace. But the *NamespaceIndex* of those *Nodes* cannot be the *NamespaceIndex* used for the *Nodes* defined in this document, because they are not defined by this document but generated by the *Server*.

3.4.2.2 BrowseNames

The text part of the *BrowseNames* for all *Nodes* defined in this document is specified in the tables defining the *Nodes*. The *NamespaceUri* for all *BrowseNames* defined in this document is defined in Annex A.

If the *BrowseName* is not defined by this document, a namespace index prefix like '0:EngineeringUnits' or '2:DeviceRevision' is added to the *BrowseName*. This is typically necessary if a *Property* of another specification

is overwritten or used in the OPC UA types defined in this document. Table 184 provides a list of namespaces and their indexes as used in this document.

3.4.3 Common Attributes

3.4.3.1 General

The *Attributes* of *Nodes*, their *DataTypes* and descriptions are defined in OPC 10000-3. Attributes not marked as optional are mandatory and shall be provided by a *Server*. The following tables define if the *Attribute* value is defined by this specification or if it is server-specific.

For all Nodes specified in this specification, the Attributes named in Table 4 shall be set as specified in the table.

Attribute	Value	
DisplayName	The <i>DisplayName</i> is a <i>LocalizedText</i> . Each server shall provide the <i>DisplayName</i> identical to the <i>BrowseName</i> of the <i>Node</i> for the LocaleId "en". Whether the server provides translated names for other LocaleIds is server-specific.	
Description	Optionally a server-specific description is provided.	
NodeClass	Shall reflect the NodeClass of the Node.	
Nodeld	The Nodeld is described by BrowseNames as defined in 3.4.2.1.	
WriteMask	Optionally the <i>WriteMask Attribute</i> can be provided. If the <i>WriteMask Attribute</i> is provided, it shall set all non-server-specific <i>Attributes</i> to not writable. For example, the <i>Description Attribute</i> may be set to writable since a <i>Server</i> may provide a server-specific description for the <i>Node</i> . The <i>NodeId</i> shall not be writable, because it is defined for each <i>Node</i> in this specification.	
UserWriteMask	Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask Attribute apply.	
RolePermissions	Optionally server-specific role permissions can be provided.	
UserRolePermissions	Optionally the role permissions of the current Session can be provided. The value is server- specific and depend on the <i>RolePermissions Attribute</i> (if provided) and the current Session.	
AccessRestrictions	Optionally server-specific access restrictions can be provided.	

Table 4 – Common Node Attributes

3.4.3.2 Objects

For all *Objects* specified in this specification, the *Attributes* named in Table 5 shall be set as specified in the table. The definitions for the *Attributes* can be found in OPC 10000-3.

Table 5 – Common Object Attributes

Attribute	Value
EventNotifier	Whether the Node can be used to subscribe to Events or not is server-specific.

3.4.3.3 Variables

For all *Variables* specified in this specification, the *Attributes* named in Table 6 shall be set as specified in the table. The definitions for the *Attributes* can be found in OPC 10000-3.

Attribute	Value	
MinimumSamplingInterval	Optionally, a server-specific minimum sampling interval is provided.	
AccessLevel	The access level for <i>Variables</i> used for type definitions is server-specific, for all other <i>Variables</i> defined in this specification, the access level shall allow reading; other settings are server-specific.	
UserAccessLevel	The value for the UserAccessLevel Attribute is server-specific. It is assumed that all Variables can be accessed by at least one user.	
Value	For <i>Variables</i> used as <i>InstanceDeclarations</i> , the value is server-specific; otherwise it shall represent the value described in the text.	
ArrayDimensions	 If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) th ArrayDimensions can either be set to null or the Attribute is missing. This behavior is server specific. If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the ArrayDimensions Attribute shall be specified in the table defining the Variable. 	
Historizing	The value for the <i>Historizing Attribute</i> is server-specific.	
AccessLevelEx	If the <i>AccessLevelEx Attribute</i> is provided, it shall have the bits 8, 9, and 10 set to 0, meaning that read and write operations on an individual <i>Variable</i> are atomic, and arrays can be partly written.	

Table 6 – Common Variable Attributes

3.4.3.4 VariableTypes

For all *VariableTypes* specified in this specification, the *Attributes* named in Table 7 shall be set as specified in the table. The definitions for the *Attributes* can be found in OPC 10000-3.

Attributes	Value
Value	Optionally a server-specific default value can be provided.
ArrayDimensions	If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the ArrayDimensions can either be set to null or the Attribute is missing. This behavior is server- specific. If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the ArrayDimensions Attribute shall be specified in the table defining the VariableType.

Table 7 – Common VariableType Attributes

3.4.3.5 Methods

For all *Methods* specified in this specification, the *Attributes* named in Table 8 shall be set as specified in the table. The definitions for the *Attributes* can be found in OPC 10000-3.

Attributes	Value
Executable	All <i>Methods</i> defined in this specification shall be executable (<i>Executable Attribute</i> set to "True"), unless it is defined differently in the <i>Method</i> definition.
UserExecutable	The value of the <i>UserExecutable Attribute</i> is server-specific. It is assumed that all <i>Methods</i> can be executed by at least one user.

Table 8 – Common Method Attributes

4 General information to Compressed Air Systems and OPC UA

4.1 Introduction to Compressed Air Systems

This document describes an information model, which aims to cover the whole *Compressed Air System*. A typical *Compressed Air System* consists of several devices, such as compressors, dryers, filters, air quality monitoring units etc., it is commonly also equipped with a *Main Control System*. The latter is used to control and/or monitor the connected devices and gather information from the same. This aggregated information is often provided to higher level systems through existing field bus technology (e.g. Profibus, Modbus, CAN Bus), with the drawback that the content and structure of the provided information is highly dependent on the manufacturer of the *Main Control System*. With this specification an integration in a *Main Control System* would be possible.

The variety of *Compressed Air System* is rather wide. It could be e.g. two compressors and a *Main Control System* and a basic compressed air treatment as a minimum configuration. More complex *Compressed Air System* have several compressors which must be controlled and several *Airnets* of different pressures with specific dryers, filters etc.

Therefore, this specification covers a very broad range of systems as well as of applications.

A typical more complex Compressed Air System is described in the following figure:

4.2 Introduction to OPC Unified Architecture

4.2.1 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal communication protocol. While there are numerous communication solutions available, OPC UA has key advantages:

- A state of art security model (see OPC 10000-2).
- A fault tolerant communication protocol.
- An information modelling framework that allows application developers to represent their data in a way that makes sense to them.

OPC UA has a broad scope which delivers for economies of scale for application developers. This means that a larger number of high-quality applications at a reasonable cost are available. When combined with semantic models such as OPC UA for Compressed Air Systems, OPC UA makes it easier for end users to access data via generic commercial applications.

The OPC UA model is scalable from small devices to ERP systems. OPC UA *Servers* process information locally and then provide that data in a consistent format to any application requesting data - ERP, MES, PMS, Maintenance Systems, HMI, Smartphone or a standard Browser, for examples. For a more complete overview see OPC 10000-1.

4.2.2 Basics of OPC UA

As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP, Web Sockets.

As an extensible standard, OPC UA provides a set of *Services* (see OPC 10000-4) and a basic information model framework. This framework provides an easy manner for creating and exposing vendor defined information in a standard way. More importantly all OPC UA *Clients* are expected to be able to discover and use vendor-defined information. This means OPC UA users can benefit from the economies of scale that come with generic visualization and historian applications. This specification is an example of an OPC UA *Information Model* designed to meet the needs of developers and users.

OPC UA *Clients* can be any consumer of data from another device on the network to browser based thin clients and ERP systems. The full scope of OPC UA applications is shown in Figure 2.

Figure 2 – The Scope of OPC UA within an Enterprise

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling lost messages, failover, heartbeat, etc. With its binary encoded data, it offers a high-performing data exchange solution. Security is built into OPC UA as security requirements become more and more important especially since environments are connected to the office network or the internet and attackers are starting to focus on automation systems.

4.2.3 Information modelling in OPC UA

4.2.3.1 Concepts

OPC UA provides a framework that can be used to represent complex information as *Objects* in an *AddressSpace* which can be accessed with standard services. These *Objects* consist of *Nodes* connected by *References*. Different classes of *Nodes* convey different semantics. For example, a *Variable Node* represents a value that can be read or written. The *Variable Node* has an associated *DataType* that can define the actual value, such as a string, float, structure etc. It can also describe the *Variable* value as a variant. A *Method Node* represents a function that can be called. Every *Node* has a number of *Attributes* including a unique identifier called a *Node/d* and non-localized name called as *BrowseName*. An *Object* representing a 'Reservation' is shown in Figure 3.

Figure 3 – A Basic Object in an OPC UA Address Space

Object and *Variable Nodes* represent instances and they always reference a *TypeDefinition* (*ObjectType* or *VariableType*) *Node* which describes their semantics and structure. illustrates the relationship between an instance and its *TypeDefinition*.

The type *Nodes* are templates that define all of the children that can be present in an instance of the type. In the example in Figure 4 the PersonType *ObjectType* defines two children: First Name and Last Name. All instances of PersonType are expected to have the same children with the same *BrowseNames*. Within a type the *BrowseNames* uniquely identify the children. This means *Client* applications can be designed to search for children based on the *BrowseNames* from the type instead of *Nodelds*. This eliminates the need for manual reconfiguration of systems if a *Client* uses types that multiple *Servers* implement.

OPC UA also supports the concept of sub-typing. This allows a modeler to take an existing type and extend it. There are rules regarding sub-typing defined in OPC 10000-3, but in general they allow the extension of a given type or the restriction of a *DataType*. For example, the modeler may decide that the existing *ObjectType* in some cases needs an additional *Variable*. The modeler can create a subtype of the *ObjectType* and add the *Variable*. A *Client* that is expecting the parent type can treat the new type as if it was of the parent type. Regarding *DataTypes*, subtypes can only restrict. If a *Variable* is defined to have a numeric value, a sub type could restrict it to a float.

Structure: An instance of PersonType has a First Name and a Last Name

Figure 4 – The Relationship between Type Definitions and Instances

Page 26 VDMA 40250-1:2021-09

References allow *Nodes* to be connected in ways that describe their relationships. All *References* have a *ReferenceType* that specifies the semantics of the relationship. *References* can be hierarchical or nonhierarchical. Hierarchical references are used to create the structure of *Objects* and *Variables*. Non-hierarchical are used to create arbitrary associations. Applications can define their own *ReferenceType* by creating subtypes of an existing *ReferenceType*. Subtypes inherit the semantics of the parent but may add additional restrictions. Figure 5 depicts several *References*, connecting different *Objects*.

Figure 5 – Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specification. The notation is summarized in Figure 6 – The OPC UA Information Model Notation. UML representations can also be used; however, the OPC UA notation is less ambiguous because there is a direct mapping from the elements in the figures to *Nodes* in the *AddressSpace* of an OPC UA *Server*.

Figure 6 – The OPC UA Information Model Notation

A complete description of the different types of Nodes and References can be found in OPC 10000-3 and the base structure is described in OPC 10000-5.

OPC UA specification defines a very wide range of functionality in its basic information model. It is not required that all *Clients* or *Servers* support all functionality in the OPC UA specifications. OPC UA includes the concept of *Profiles*, which segment the functionality into testable certifiable units. This allows the definition of functional subsets (that are expected to be implemented) within a companion specification. The *Profiles* do not restrict functionality, but generate requirements for a minimum set of functionality (see OPC 10000-7)

4.2.3.2 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent *AddressSpace*. Namespaces are used to make this possible by eliminating naming and id conflicts between information from different sources. Each namespace in OPC UA has a globally unique string called a NamespaceUri which identifies a naming authority and a locally unique integer called a NamespaceIndex, which is an index into the *Server's* table of *NamespaceUris*. The *NamespaceIndex* is unique only within the context of a *Session* between an OPC UA *Client* and an OPC UA *Server-* the *NamespaceIndex* can change between *Sessions* and still identify the same item even though the NamespaceUri's location in the table has changed. The *Services* defined for OPC UA use the *NamespaceIndex* to specify the Namespace for gualified values.

There are two types of structured values in OPC UA that are qualified with *NamespaceIndexes*: Nodelds and *QualifiedNames*. Nodelds are locally unique (and sometimes globally unique) identifiers for *Nodes*. The same globally unique *Nodeld* can be used as the identifier in a node in many *Servers* – the node's instance data may vary but its semantic meaning is the same regardless of the *Server* it appears in. This means *Clients* can have built-in knowledge of what the data means in these *Nodes*. OPC UA *Information Models* generally define globally unique *Nodelds* for the *TypeDefinitions* defined by the *Information Model*.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the *BrowseNames* of *Nodes* and allow the same names to be used by different information models without conflict. *TypeDefinitions* are not allowed to have children with duplicate *BrowseNames*; however, instances do not have that restriction.

4.2.3.3 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an *Information Model* by defining *ObjectTypes*, *VariableTypes*, *DataTypes* and *ReferenceTypes* that represent the concepts used in the vertical market, and potentially also well-defined Objects as entry points into the AddressSpace.

5 Use cases

Below is a list of possible use cases a *Main Control System* may implement fully or partly.

5.1 Device Identification

The use case Device Identification forms the basis for the operation of the *Compressed Air System* and the operators plant asset management, e.g. Documentation Management, Energy Management and Maintenance Management. For this purpose, the *Main Control System* shall provide properties for asset identification.

In addition to nameplate information of the *CASParts* of a *Compressed Air System*, the operator / integrator requires properties to describe its functional role and installation place.

An operator / integrator should be able to explore the topology of the *Compressed Air System*. All browsable *Components* shall be identifiable. This includes non-communicating *Components* (e.g. *Airnet*, receiver) as well as assets capable of communication (e.g. compressor).

5.2 Configuration

To improve commissioning respective recommissioning time, the operator / integrator requires support in configuration of the *Compressed Air System*. Configuration procedures due to replacement, upgrades, etc. should be supported by configuration templates and loading / storing of configuration settings.

5.3 Maintenance Management

For the integration of *Compressed Air System Components* in an operator's maintenance management application, the *Main Control System* should provide *Compressed Air System* specific maintenance properties.

To support asset monitoring, the *Main Control System* collects and analyzes operational and historical data (e.g. current values, deviations, performance, wear). Since plant operators require a generalized health status of plant assets, the *Main Control System* shall provide a generalized *Compressed Air System* health status, based on the NAMUR NE107 categories. Each *Component* should have a specific set of alarms and conditions assigned to it.

5.4 Energy Management

To integrate a *Compressed Air System* into the operator's energy management, the *Main Control System* should provide energy-related information about the *Compressed Air System* and its installed *CASParts*, e.g. power consumption, flow, pressure, efficiency. The provided information is calculated or measured, representing current values, or aggregated in time (weekly, monthly etc.).

The operator should be able to trigger analyses of the *Compressed Air Systems* energy performance within the *Main Control System*.

5.5 Operation

An operator / integrator should be able to remotely activate / deactivate (via the *Main Control System*) the generation of compressed air. It should be possible to select from different operating modes for the *Compressed Air System*.

For the operators / integrators process monitoring, the *Main Control System* provides access to standardized state machine information, alarms, warnings, and events. The operator monitors the generation of compressed air by accessing operational data of the *Compressed Air System* via the *Main Control System*. The *Main Control System* shall provide actual values of e.g. pressure, flow, inlet / outlet temperature and power consumption. Actual values of other *Compressed Air System CASParts* (e.g. sensors) should also be offered. To analyze historical data of *Compressed Air System* operation within the *Main Control System*, an operator / integrator may browse archive data in the *Main Control System*.

Page 30 VDMA 40250-1:2021-09

6 OPC UA for Compressed Air Systems Information Model

This section introduces the "OPC UA Information Model for Compressed Air Systems - Main Control System".

6.1 Model Overview

Figure 8 shows all *ObjectTypes* which are defined by this companion specification.

6.1.1 Variables

In most cases *Variables* have the TypeDefinition DataItemType or one of its subtypes. The optional *Property* Definition can be added to a *Variable* that uses such a TypeDefinition. This allows manufacturers to store a specific definition for each *Variable*.

Variables that use the DataType Boolean are modeled with the TypeDefinition TwoStateDiscreteType. Such *Variables* have the TrueState and FalseState *Properties*, which provide human readable and mandatory True and False states in their Value *Attribute*.

6.1.2 FunctionalGroups

When applicable, the *BrowseName* of a *FunctionalGroup* was taken from the recommendation in OPC 10000-100.

A FunctionalGroup that would have no Variables, Objects, or Methods if instantiated shall not be instantiated.

6.2 Compressed air conditions for downstream machines or systems

Machines or systems downstream the *Compressed Air System* that use the compressed air require data on the condition of the compressed air. These conditions are provided at one or more *Customer Distribution Points*, depending on the concrete *Compressed Air System* setup. When modeling a *Compressed Air System*, the *Customer Distribution Points* shall be described as such. This can be done using external documentation, but it is recommended to use the Description *Attribute* of the *Node* that serves as the output of the *Compressed Air System*. Common examples of *Customer Distribution Points* are presented in chapter 6.3 Airnet Examples.

6.3 Airnet Examples

Figure 8 shows a simple model of an *Airnet*. The inlet of the *Airnet* is the sum of the inlets of compressors C1 and C2. The outlet of the *Airnet* is the *Customer Distribution Point*. All *CASParts* that are inside the red box are connected to the red *Airnet* and treated as such. The *Main Control System* is not a part of the *Airnet*.

Figure 8 – Simple Airnet

Page 32 VDMA 40250-1:2021-09

Figure 9 shows a *Compressed Air System* with two separate *Airnets*. The inlet of the red (upper) *Airnet* is the sum of the inlets of compressors C1 and C2. The outlet of the red *Airnet* is the upper *Customer Distribution Point*. All *CASParts* that are inside the red box are connected to the red *Airnet* and treated as such. The inlet of the blue (lower) *Airnet* is the sum of the inlets of compressors C3 and C4. The outlet of the blue *Airnet* is the lower *Customer Distribution Point*. All *CASParts* that are inside the red box are connected to be blue blue *Airnet* and treated as such. The blue *Airnet* is the sum of the inlets of compressors C3 and C4. The outlet of the blue *Airnet* is the lower *Customer Distribution Point*. All *CASParts* that are inside the blue box are connected to the blue *Airnet* and treated as such. The *Main Control System* is not a part of any *Airnet*.

Figure 9 – Two Simple Airnets

Figure 10 shows an arbitrary example on how two *Airnets* of the same *Compressed Air System* can be connected. The inlet of the red (bigger) *Airnet* is the sum of compressors C1, C2, C3, and C4. The two outlets of the red *Airnet* are the inlet of the dryer D3 and the lower *Customer Distribution Point*. All *CASParts* that are inside the red box are connected to the red *Airnet* and treated as such. The inlet of the blue (smaller) *Airnet* is the upper *Customer Distribution Point*. All *CASParts* that are the inlet of the blue of the blue *Airnet* is the upper *Customer Distribution Point*. All *CASParts* that are inside the blue box are connected to the blue *Airnet* and treated as such. The *Main Control System* is not a part of any *Airnet*.

Figure 10 – Connected Airnets

Figure 11 shows two overlapping *Airnets* of the same *Compressed Air System*. The inlet of the red (upper) *Airnet* is the sum of compressors C1 and C2. The two outlets of the red *Airnet* are the upper and the lower *Customer Distribution Points*. All *CASParts* that are inside the red box are connected to the red *Airnet* and treated as such. The inlet of the blue (lower) *Airnet* is the sum of compressors C3 and C4. The outlet of the blue *Airnet* is the lower *Customer Distribution Points*. All *CASParts* that are inside the red box are connected to the red *Airnet* and treated as such. The inlet of the blue (lower) *Airnet* is the sum of compressors C3 and C4. The outlet of the blue *Airnet* is the lower *Customer Distribution Point*. All *CASParts* that are inside the blue box are connected to the blue *Airnet* and treated as such. The sensor M2 is connected to both *Airnets*. If Valve CV3 is open, the red *Airnet* is the active *Airnet* for M2. If Valve CV3 is closed, the blue *Airnet* is the active *Airnet* for M2. Valve CV3 is connected to the red *Airnet* and not to the blue *Airnet*, because its purpose is to divert the air from the *Airnet* with the higher pressure (red, 11 bar) to the lower distribution point and not from the *Airnet* with the lower pressure (blue, 8 bar) to the upper distribution point. The *Main Control System* is not a part of any *Airnet*.

Figure 11 – Overlapping Airnets

6.4 Identification

The *Compressed Air System* and *Airnets* are identified by an Identification *Object* of the CASIdentificationType which uses the *Interface* ITagNameplateType and its *Properties*.

The Main Control System is identified by an Identification Object of the MachineryComponentIdentificationType.

Components are identified by an Identification Object of а subtype of the abstract MachineryItemIdentificationType defined by OPC UA Machinery (OPC 40001-1). for The MachineryItemIdentificationType and its subtypes provide the capabilities to globally uniquely identify the Component and have access to vendor defined information about the Component and manage user-specific information for the identification of the Component. When instantiating a Component, the Identification Object must use an appropriate subtype of the MachineryItemIdentificationType.

For all *Components* and the *Main Control System* the DeviceClass *Property* has its Value *Attribute* set to a mandatory specific value and its *ModellingRule* changed to mandatory.

Table 9 shows for each CASPart what value shall be set for different applications like the DeviceClass, BrowseName and GroupName.

CASPart Name	DeviceClass	BrowseName	GroupName
Airnet	-	Airnet	Airnets
Charging System	Charging system	ChargingSystem	ChargingSystems
Compressor	Compressor	Compressor	Compressors
Condensate Drain	Condensate drain	CondensateDrain	CondensateDrains
Condensate Separator	Condensate separator	CondensateSeparator	CondensateSeparators
Converter	Converter	Converter	Converters
Cooling System	Cooling system	CoolingSystem	CoolingSystems
Dryer	Dryer	Dryer	Dryers
Filter	Filter	Filter	Filters
Heat Recovery System	Heat recovery system	HeatRecoverySystem	HeatRecoverySystems
Main Control System	MCS	MCS	-
Receiver	Receiver	Receiver	Receivers
Sensor	Sensor	Sensor	Sensors
Valve	Valve	Valve	Valves

Table 9 – DeviceClass, BrowseName and GroupName for CASParts

For *Components* that are not defined by this specification, the DeviceClass *Property* shall be mandatory as well. The value shall match the name of the new *Component*.

All properties of the MachineryltemIdentificationType and its subtypes shall be used as intended by the OPC UA for Machinery (OPC 40001-1) specification.

To comply with the Finding all Machines in a Server use case of the OPC UA for Machinery (OPC 40001-1) specification, all *Components* that are considered as machines by their manufacturer or the customer shall be added to the Machines *Object* defined in OPC 40001-1 and use the MachineIdentificationType as TypeDefinition for their Identification *Object*. The *Compressed Air System*, the *Main Control System*, and *Airnets* are not considered as machines in the sense of OPC 40001-1, whereas the following *Components* may be considered as machines in this context (this list is not exhaustive):

- Compressors
- Converters
- Dryers

6.5 Extending FunctionalGroups

The manufacturer or system integrator of a *Compressed Air System* may wish to add *Variables*, *Objects*, or *Methods* which are not yet defined by this specification. In such a case the additional *Variables*, *Objects*, or *Methods* shall be added to an appropriate *FunctionalGroup* of the *Component*. It is important, that the *Variables*, *Objects*, or *Methods* which are added match the description of the *FunctionalGroup* they are added to. If there is no *FunctionalGroup* available the *Variables*, *Objects*, and *Methods* fit in, the manufacturer or system integrator shall create a new *Object* of the FunctionalGroupType.

It is also possible to define a subtype of the FunctionalGroupType or one of its subtypes to define a new collection of *Variables*, *Objects*, or *Methods*. When subtyping, the manufacturer or system integrator should keep in mind, that all *Variables*, *Objects*, and *Methods* of the supertype are also available to the new subtype.

In general, no new Variables, Objects, or Methods shall be created that are already available in this specification. If the manufacturer or system integrator wants to add already existing Variables, Objects, or Methods to another FunctionalGroup, the Organizes ReferenceType shall be used.

When creating *Variables* which are representing *Quantities*, the BaseAnalogType or one of its subtypes shall be used as TypeDefinition. When creating *Variable* which are not representing *Quantities*, the DataItemType or one of its subtypes, other than the BaseAnalogType, shall be used as TypeDefinition. Either way, the Definition *Property* shall be instantiated to further clarify the intended purpose of the *Variable*.

Figure 12 illustrates some usage examples on how to extend *FunctionalGroups* of a compressor.

Namespace 6 = Namespace of the manufacturer

Figure 12 – Extending FunctionalGroups

6.6 Alarms and Conditions

Most *CASParts* have an optional *FunctionalGroup* with the default *BrowseName* Events. This *FunctionalGroup* provides *Objects* for common alarms and conditions. In total four conditions are defined: EmergencyStop, Service, Shutdown, and Warning. An *OptionalPlaceholder Object* <Event> with the TypeDefinition ConditionType is defined. If a manufacturer or system integrator adds additional alarms or conditions to a *CASPart*, <Event> shall be used. When instantiating <Event>, a concrete subtypes of the abstract ConditionType has to be used as TypeDefinition. To comply with Annex B of OPC 10000-9 – Part 9: Alarms and Conditions, a *CASPart* must have a HasCondition reference for each instantiated condition using the condition instance as *TargetNode* and the *CASPart* as *SourceNode*.

A manufacturer or system integrator may add custom alarms and conditions targeting specific *Variables* or *Objects* of a *CASPart*. In that case, the *Variable* or *Object* is the *SourceNode* and the condition instance is the *TargetNode*. If such an alarm or condition is created, the *CASPart* shall have a HasEventSource reference with the *CASPart* as *SourceNode* and the *Variable* or *Object* as *TargetNode*.

EXAMPLE A high limit alarm is needed for the Temperature *Quantity* at the process fluid inlet of a dryer. The *Object* InletTemperatureHighLimitAlarm using the ExclusiveLimitAlarmType as *TypeDefinition* is created as child of the Events *Object* of the dryer instance. A HasCondition reference is created with the Temperature *Quantity* as *SourceNode* and the InletTemperatureHighLimitAlarm as *TargetNode*. The dryer receives a HasEventSource reference to the Temperature *Quantity*.

To further comply with Annex B of OPC 10000-9, the *Compressed Air System Object* shall be the *TargetNode* of a HasNotifier reference, originating at the OPC UA *Server Object*. The *Compressed Air System Object* shall have a HasNotifier reference for each *CASPart* which instantiates alarms or conditions.

Every instantiated *Component* shall have at least one appropriate GeneratesEvent reference targeting the NAMUR NE 107 alarms defined in OPC 10000-100. These are CheckFunctionAlarmType, FailureAlarmType, MaintenanceRequiredAlarmType, and OffSpecAlarmType.

6.6.1 Severity

As defined by OPC 10000-5, all events shall have a severity assigned to them. This specification specifies specific severity ranges for some events. If no specific severity or severity range is provided for a defined event or condition, the manufacturer or integrator may choose from the default OPC UA range. The chosen severity when assigning it to a condition or event shall match the following categorization.

Severity	Lower limit	Upper limit
HIGH	801	1000
MEDIUM HIGH	601	800
MEDIUM	401	600
MEDIUM LOW	201	400
LOW	1	200

Table 10 – Severity Categorization

Figure 13 shows examples on how alarms and conditions shall be used in a Compressed Air System.

Figure 13 – Alarms and Conditions

6.7 Adding new Components

All Component ObjectTypes in this specification (clauses 7.8 - 7.19) may be used for subtyping when defining more specific Components. If future companion specifications, a manufacturer, or system integrator wants to define a more specific ObjectType for one of the existing Components, the ObjectType of that Component shall be used as supertype.

If future companion specifications, a manufacturer, or system integrator wants to define a new *Component* which is not yet provided by this specification and which is no subtype of one of the existing *Components*, the CASComponentType shall be used as *SourceNode* for the new *ObjectType*.

If a manufacturer or system integrator wants to add a *Component* which is not yet defined by this specification and does not want to create a new *ObjectType*, the CASComponentType may be used as TypeDefinition for that *Component*. In such a case, the *DataType* of Design_ComponentClass must be changed to a concrete *DataType*.

Either way, in most cases a new Enumeration *DataType* is required to specify which *ComponentClasses* are possible for the new *Component*. The *DataType* shall be provided by the same party that introduces the new *ObjectType*.

Figure 14 shows all three approaches described above that a manufacturer or system integrator can take. The left panel shows the introduction of the new compressor type TurboCompressorType in a separate *Namespace*. The middle panel shows the introduction of a completely new *Component* type in a separate *Namespace*. The right panel shows the use of the CASComponentType as TypeDefinition for a new *Component* in a separate namespace. For each approach, the corresponding new enumeration is shown below.

Figure 14 – Adding New Component Types

6.8 Asset Administration Shell for Compressed Air Systems – Main Control System

This document was created in parallel with the asset administration shell for *Compressed Air Systems – Main Control System*.

The organization Plattform Industrie 4.0 published the specification Details of the Asset Administration Shell to define the concept and metamodel for asset administration shells. The specification describes every aspect of asset administration shells in detail.

Figure 15 shows an abstract example on the composition of an I4.0 component and the content of an asset administration shell.

An asset administration shell is defined by the Plattform Industrie 4.0 organization as a "standardized *digital representation* of the *asset*, corner stone of the interoperability between the applications managing the manufacturing systems. It identifies the Administration Shell and the assets represented by it, holds digital models of various aspects (*submodels*) and describes *technical functionality* exposed by the Administration Shell or respective assets." [1]

The content of an asset administration shell consists of submodels and properties. "Each submodel refers to a well-defined domain or subject matter. Submodels can become standardized and thus become submodels templates." [1]

The content of this OPC UA Companion Specification is linked to the asset administration shell for *Compressed Air Systems – Main Control Systems* in a specific way. In general, submodels are modeled as subtypes of the FunctionalGroupType of OPC 10000-100.

7 OPC UA ObjectTypes

7.1 CASType ObjectType Definition

The CASType is the representation of a Compressed Air System and provides both Objects for Quantities and FunctionalGroups for its Airnets, Components, and the Main Control System. It is illustrated in Figure 16 and formally defined in Table 11.

Figure 16 – CASType Illustration

Table 11 –	CASType	Definition
------------	---------	------------

Attribute	Value				
BrowseName	CASType				
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the 0:Bas	eObjectType define	ed in OPC 10000-5.			
0:HasComponent	Object	Airnets		AirnetsType	0
0:HasComponent	Object	4:Components		ComponentsGroupType	0
0:HasComponent	Object	2:Identification		CASIdentificationType	0
0:HasComponent	Object	MCS		MCSType	0

The CASType *ObjectType* is a concrete type and shall be used directly.

The optional Object Airnets organizes all available Airnets.

The optional Object Components organizes all installed Components by their ComponentClasses.

The optional FunctionalGroup Identification provides Properties to identify a Compressed Air System.

The optional Object MCS is the representation of the Main Control System.

The InstanceDeclarations of the CASType have additional Attributes defined in Table 12.

Table 12 – CASType Attribute values for child Nodes

Source Path	Description Attribute	
Airnets	All airnets in a compressed air system as browsable objects.	
4:Components	All components in a compressed air system as browsable objects.	
2:Identification	Identification properties of the compressed air system.	
MCS	Representation of the MCS in a compressed air system.	

Figure 17 shows a usage example for the instantiation of an arbitrary *Compressed Air System* that has two *Airnets*, two compressors, one dryer, and two valves. The *Airnets* share CompressorX.

For each *DeviceClass* connected to the *Compressed Air* System, there is one ComponentGroup *Object* in the Components *Object* of the CompressedAirSystem *Object*. The instances of the compressors, valves, and the dryer are children of these *Objects*.

Both *Airnets* have a Components *Object*, just like the CompressedAirSystem *Object*. For each *DeviceClass* connected to an *Airnet*, there is one ComponentGroup *Object* in the Components *Object* of that *Airnet*. Connected *Components* are referenced by an Organizes reference.

Figure 17 – CASType Components Reference Instantiation Example

7.2 AirnetsType ObjectType Definition

The AirnetsType enables the grouping of Airnets. It is formally defined in Table 13.

Attribute	Value				
BrowseName	AirnetsType				
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the 4:M	achineCompone	entsType defined in OPC 40001-1,	i.e. inheriting the Inst	stanceDeclarations of that Nod	e.
The following node	s override node:	s added by the 4:MachineCompon	entsType		
0:HasProperty	Variable	0:DefaultInstanceBrowseName	0:QualifiedName	0:PropertyType	
0:HasComponent	Object	4: <component></component>		AirnetType	OP

Table 13 – AirnetsType Definition

The *InstanceDeclarations* of the AirnetsType have additional *Attributes* defined in Table 14.

Table 14 – AirnetsType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
0:DefaultInstanceBrowseName	"Airnets"	The default BrowseName for instances of the type.
4: <component></component>		Represents of an airnet.

7.3 ComponentsGroupType ObjectType Definition

The *ComponentsGroupType* enables the grouping of *Components* and can be nested. It is illustrated in Figure 18 and formally defined in Table 15.

Figure 18 – ComponentsGroupType Illustration

Attribute	Value					
BrowseName	Components	ComponentsGroupType				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 4:Mach	nineComponent	tsType defined in OPC 40001	-1, i.e. inheriting th	e InstanceDeclarations of that N	ode.	
0:HasComponent	Object	<componentsgroup></componentsgroup>		4:MachineComponentsType	OP	
0:HasComponent	Object	ChargingSystems		4:MachineComponentsType	0	
0:HasComponent	Object	Compressors		4:MachineComponentsType	0	
0:HasComponent	Object	CondensateDrains		4:MachineComponentsType	0	
0:HasComponent	Object	CondensateSeparators		4:MachineComponentsType	0	
0:HasComponent	Object	Converters		4:MachineComponentsType	0	
0:HasComponent	Object	CoolingSystems		4:MachineComponentsType	0	
0:HasComponent	Object	Dryers		4:MachineComponentsType	0	
0:HasComponent	Object	Filters		4:MachineComponentsType	0	
0:HasComponent	Object	HeatRecoverySystems		4:MachineComponentsType	0	
0:HasComponent	Object	Receivers		4:MachineComponentsType	0	
0:HasComponent	Object	Sensors		4:MachineComponentsType	0	
0:HasComponent	Object	Valves		4:MachineComponentsType	0	

Table 15 – ComponentsGroupType Definition

The *OptionalPlaceholder Object* <ComponentsGroup> allows nesting this *ObjectType* to further categorize the referenced *Components*. It also allows adding concrete *Component* groups not defined by this specification.

The InstanceDeclarations of the ComponentsGroupType have additional Attributes defined in Table 16.

SourcePath	Description Attribute
<componentsgroup></componentsgroup>	All components of a specific type in a compressed air system as browsable objects.
ChargingSystems	Organizes all charging systems connected to the compressed air system.
Compressors	Organizes all compressors connected to the compressed air system.
CondensateDrains	Organizes all condensate drains connected to the compressed air system.
CondensateSeparators	Organizes all condensate separators connected to the compressed air system.
Converters	Organizes all converters connected to the compressed air system.
CoolingSystems	Organizes all cooling systems connected to the compressed air system.
Dryers	Organizes all dryers connected to the compressed air system.
Filters	Organizes all filters connected to the compressed air system.
HeatRecoverySystems	Organizes all heat recovery systems connected to the compressed air system.
Receivers	Organizes all receivers connected to the compressed air system.
Sensors	Organizes all sensors connected to the compressed air system.
Valves	Organizes all valves connected to the compressed air system.

7.4 AirnetType ObjectType Definition

The *AirnetType* is the representation of an *Airnet* and provides both *Objects* for *Quantities* and *FunctionalGroups*. It is illustrated in Figure 19 and formally defined in Table 17.

Figure 19 – AirnetType Illustration

Table 17 –	AirnetType	Definition
------------	------------	------------

Attribute	Value				
BrowseName	AirnetType	9			
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the 2:Top	ologyElemen	<i>tType</i> defined in OPC 10000-1	00, i.e. inheriting the	InstanceDeclarations of that Nod	e.
0:HasComponent	Object	Ambient		FluidQuantitiesType	0
0:HasComponent	Object	4:Components		AirnetComponentsType	0
0:HasComponent	Object	2:Configuration		AirnetConfigurationType	0
0:HasComponent	Object	ElectricalCircuit		ElectricalCircuitType	0
0:HasComponent	Object	2:Operational		AirnetOperationalType	0
0:HasComponent	Object	ProcessFluidCircuit		FluidCircuitType	0
The following nodes	override node	l es added by the 2:TopologyEle	mentType		l
0:HasComponent	Object	2:Identification		CASIdentificationType	М

The optional *Object* Ambient provides *Quantities* for the ambient air conditions at an *Airnet*. Of the optional *Variables* of the FluidQuantitiesType only AbsolutePressure, DewPoint, RelativeHumidity, and Temperature are available.

The optional *Folder* Components provides *Folders* for organizing *Components* connected to the *Airnet*. Usually, the *Components* are grouped by their *DeviceClass* and shall be referenced by using the Organizes ReferenceType. The concrete instance of a *Component* shall be instantiated in the Components *Folder* of the CASType instance.

Figure 20 shows an example on how to instantiate the *FunctionalGroup* Components for an *Airnet* in the *AddressSpace* of an OPC UA *Server*.

Figure 20 – Airnet Components Example

The optional FunctionalGroup Configuration provides Variables for configuring the behavior of an Airnet.

The optional Object ElectricalCircuit provides Quantities for the electrical ports of an Airnet.

The mandatory *FunctionalGroup* Identification provides *Properties* to identify an *Airnet*.

The optional *FunctionalGroup* Operational provides *Variables* for process data used during normal operation of an *Airnet*, such as measurements, efficiencies, and states.

The optional *Object* ProcessFluidCircuit provides static design information about the process fluid as well as *Quantities* for the process fluids inlets, outlets, and delta of an *Airnet*.

The *InstanceDeclarations* of the AirnetType have additional *Attributes* defined in Table 18.

Source Path	Value Attribute	Description Attribute
Ambient		Measurements and calculations of ambient air at the topology element.
Ambient AbsolutePressure		Measured or calculated actual absolute pressure of the environment in which the component, piping or system is working.
Ambient DewPoint		Measured or calculated actual dew point of the environment in which the component, piping or system is working.
Ambient RelativeHumidity		Measured or calculated actual relative humidity of the environment in which the component, piping or system is working.
Ambient Temperature		Measured or calculated actual temperature of the environment in which the component, piping or system is working.
4:Components		Organizes components assigned to the airnet.
2:Configuration		Configure the behavior of the topology element.
ElectricalCircuit		Measurements and calculations of the electrical ports and delta of the topology element.
2:Identification		Identification properties of the topology element.
2:Operational		Data for normal operation of the topology element.
ProcessFluidCircuit		Measurements and calculations of the process fluid ports and delta of the topology element.
ProcessFluidCircuit FluidType		Enumeration of possible process fluid types.

Table 18 – AirnetType Attribute values for child Noc	les
--	-----

7.5 AirnetComponentsType ObjectType Definition

The *AirnetComponentsType* enables the grouping of *Airnets*. It is formally defined in Table 19.

Attribute	Value	Value					
BrowseName	AirnetCompor	NirnetComponentsType					
IsAbstract	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of the 0:Fo	o <i>lderType</i> define	ed in OPC 10000-5.					
0:HasComponent	Object	<componentsgroup></componentsgroup>		0:FolderType	OP		
0:HasComponent	Object	ChargingSystems		0:FolderType	0		
0:HasComponent	Object	Compressors		0:FolderType	0		
0:HasComponent	Object	CondensateDrains		0:FolderType	0		
0:HasComponent	Object	CondensateSeparators		0:FolderType	0		
0:HasComponent	Object	Converters		0:FolderType	0		
0:HasComponent	Object	CoolingSystems		0:FolderType	0		
0:HasComponent	Object	Dryers		0:FolderType	0		
0:HasComponent	Object	Filters		0:FolderType	0		
0:HasComponent	Object	HeatRecoverySystems		0:FolderType	0		
0:HasComponent	Object	Receivers		0:FolderType	0		
0:HasComponent	Object	Sensors		0:FolderType	0		
0:HasComponent	Object	Valves		0:FolderType	0		

Table 19 – AirnetComponentsType Definition

The *OptionalPlaceholder Object* <ComponentsGroup> allows adding concrete *Component* groups not defined by this specification.

The InstanceDeclarations of the AirnetComponentsType have additional Attributes defined in Table 20.

Table 20 – AirnetComponentsType Attribute values for child Nodes

Source Path	Description Attribute
<componentsgroup></componentsgroup>	All components of a specific type connected to the airnet.
ChargingSystems	Organizes all charging systems connected to the airnet.
Compressors	Organizes all compressors connected to the airnet.
CondensateDrains	Organizes all condensate drains connected to the airnet.
CondensateSeparators	Organizes all condensate separators connected to the airnet.
Converters	Organizes all converters connected to the airnet.
CoolingSystems	Organizes all cooling systems connected to the airnet.
Dryers	Organizes all dryers connected to the airnet.
Filters	Organizes all filters connected to the airnet.
HeatRecoverySystems	Organizes all heat recovery systems connected to the airnet.
Receivers	Organizes all receivers connected to the airnet.
Sensors	Organizes all sensors connected to the airnet.
Valves	Organizes all valves connected to the airnet.

7.6 MCSType ObjectType Definition

The *MCSType* is the representation of a *Main Control System* and provides both *Objects* for *Quantities* and *FunctionalGroups*. It is illustrated in Figure 21 and formally defined in Table 21.

Attribute	Value	Value				
BrowseName	MCSTyp	e				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 2:To	oologyElem	entType defined in OPC	10000-100, i.e. inh	neriting the InstanceDeclarations of that Node.		
0:HasComponent	Object	Analyses		AnalysesType	0	
0:HasComponent	Object	2:Configuration		MCSConfigurationType	0	
0:HasComponent	Object	ElectricalCircuit		ElectricalCircuitType	0	
0:HasComponent	Object	Events		EventsType	0	
0:HasComponent	Object	2:Operational		OperationalType	0	
0:HasComponent	Object	2:Statistics		StatisticsType	0	
The following nodes	override no	I odes added by the 2:Top	ologyElementType		<u> </u>	
0:HasComponent	Object	2:Identification		4:MachineryComponentIdentificationType	М	

The optional *FunctionalGroup* Analyses provides *Objects* and *Methods* for analyses that can be invoked on the *Main Control System*.

The optional *FunctionalGroup* Configuration provides *Objects* and *Methods* for configuring the behavior of the *Main Control System*.

The optional Object ElectricalCircuit provides Quantities for the electrical input of the Main Control System.

The optional *FunctionalGroup* Events provides *Objects* for alarms and conditions of the *Main Control System*. Of the available optional *Objects* in the EventsType, only Service and Warning are instantiated.

The mandatory *FunctionalGroup* Identification provides *Properties* to identify the *Main Control System*. The optional Variable DeviceClass has its *ModellingRule* changed to mandatory and its Value *Attribute* set to a specific value.

The optional *FunctionalGroup* Operational provides *Variables* for process data used during normal operation of the *Main Control System*, such as measurements, efficiencies, and states.

The optional *FunctionalGroup* Statistics provides *Variables* for statistical applications of the *Main Control System*, such as counters.

The InstanceDeclarations of the MCSType have additional Attributes defined in Table 22.

Table 22 – MCSType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
Analyses		Invokable analyses for the topology element.
2:Configuration		Configure the behavior of the topology element.
ElectricalCircuit		Measurements and calculations of the electrical ports and delta of the topology element.
Events		Alarms and conditions of the topology element.
2:Identification		Identification properties of the topology element.
2:Identification 2:DeviceClass	"MCS"	Domain or for what purpose this item is used.
2:Operational		Data for normal operation of the topology element.
2:Statistics		Data for statistics applications for the topology element.

7.7 CASComponentType ObjectType Definition

The CASComponentType is the representation of a Component and provides both Objects for Quantities and FunctionalGroups. It is illustrated in Figure 22 and formally defined in Table 23.

Figure 22 – CASComponentType Illustration

Attribute	Value				
BrowseName	CASCompone	ntType			
IsAbstract	False	••			
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the 2:To	opologyElement	Type defined in OPC 10000-100), i.e. inheriting	the InstanceDeclarations of that Node.	
0:HasSubtype	ObjectType	ChargingSystemType	Defined in 7.	8	
0:HasSubtype	ObjectType	CompressorType	Defined in 7.	9	
0:HasSubtype	ObjectType	ConverterType	Defined in 7.	10	
0:HasSubtype	ObjectType	CoolingSystemType	Defined in 7.	11	
0:HasSubtype	ObjectType	DrainType	Defined in 7.	12	
0:HasSubtype	ObjectType	DryerType	Defined in 7.	13	
0:HasSubtype	ObjectType FilterType		Defined in 7.	14	
0:HasSubtype	ObjectType HeatRecoverySystemType		Defined in 7.	15	
0:HasSubtype	ObjectType ReceiverType		Defined in 7.16		
0:HasSubtype	ObjectType SensorType		Defined in 7.17		
0:HasSubtype	ObjectType SeparatorType		Defined in 7.18		
0:HasSubtype	ObjectType	ValveType	Defined in 7.	19	
0:HasProperty	Variable	ActiveAirnet	0:Nodeld	0:PropertyType	O, RW
0:HasComponent	Object	Ambient		FluidQuantitiesType	0
0:HasComponent	Object	2:Configuration		ConfigurationType	0
0:HasComponent	Object	CoolantCircuit		FluidCircuitType	0
0:HasComponent	Object	Design		DesignType	0
0:HasComponent	Object	ElectricalCircuit		ElectricalCircuitType	0
0:HasComponent	Object	Events		EventsType	0
0:HasComponent	Object	2:Operational		OperationalType	0
0:HasComponent	Object	ProcessFluidCircuit		FluidCircuitType	0
0:HasComponent	Object	2:Statistics		StatisticsType	0
The following node	s override nodes	added by the 2:TopologyElem	entType		L
0:HasComponent	Object	2:Identification		4:MachineryItemIdentificationType	М

Table 23 – CASComponentType Definition	Table	23 –	CASCom	ponentTy	pe Definition
--	-------	------	--------	----------	---------------

The optional *Property* ActiveAirnet indicates which *Airnet* is currently using this *Component*. The *Property* shall only be instantiated if the *Component* is connected to more than one *Airnet*.

The optional *Object* Ambient provides *Quantities* for the ambient air conditions at a *Component*. Of the optional *Variables* of the FluidQuantitiesType only AbsolutePressure, DewPoint, RelativeHumidity, and Temperature are instantiated.

The optional *FunctionalGroup* Configuration provides a framework for properties aimed at configuring the behavior of a *Component* in a *Compressed Air System*.

The optional *Object* CoolantCircuit provides design information about the coolant used as well as measurements and calculations for the inlet, outlet, and delta of coolant conditions on a *Component* in a *Compressed Air System*.

The optional *FunctionalGroup* Design provides static design properties of a *Component* in a *Compressed Air System* and acts as a framework for design properties in general.

The optional *Object* ElectricalCircuit provides measurements and calculations for the electrical input, output, and delta of a *Component* in a *Compressed Air System*.

The optional *FunctionalGroup* Events provides instances of common conditions of a *Component* in a *Compressed Air System*. It also provides a framework for instantiating conditions in the *AddressSpace*. If the server is not capable of instantiating ConditionTypes, this group shall not be instantiated.

The mandatory *FunctionalGroup* Identification provides capabilities to identify a *Component* in a *Compressed Air System*.

The optional *FunctionalGroup* Operational provides properties for process data used during normal operation of a *Component*, such as measurements, efficiencies, and states.

The optional *Object* ProcessFluidCircuit provides design information about the process fluid processed as well as measurements and calculations for the inlet, outlet, and delta of process fluid conditions on a *Component* in a *Compressed Air System*.

The optional *FunctionalGroup* Statistics provides properties for statistics applications of a *Component* in a *Compressed Air System*, like counters.

The optional *Property* DeviceClass of the MachineryItemIdentificationType is overridden. The ModellingRule is changed to mandatory and the Value *Attribute* is set to a specific value for each *DeviceClass*. When a concrete subtype of the MachineryItemIdentificationType is selected for a subtype or an instance of the CASComponentType, the ModellingRule of the DeviceClass *Property* shall remain as mandatory.

When instantiating the CASComponentType or one of its subtypes, the instantiated *Object* shall have at least one appropriate GeneratesEvent reference targeting the subtypes of the DeviceHealthDiagnosticAlarmType.

The components of the CASComponentType have additional subcomponents defined in Table 24.

Source Path	References	NodeCl ass	BrowseName	DataType	TypeDefinition	Other
The following no	des override nodes	added by th	e 4:MachineryItemIc	lentificationType		
2:Identification	0:HasProperty	Variable	2:DeviceClass	0:String	0:PropertyType	M, RO
The following no	des override nodes	added by th	e OperationalType	•		
2:Operational	0:HasComponent	Variable	HealthState	HealthStateEnum	0:DataItemType	O, RO
2:Operational	0:HasComponent	Variable	IntegratedState	IntegratedStateEnum	0:DataItemType	O, RO
2:Operational	0:HasComponent	Variable	OperatingState	OperatingStateEnum	0:DataItemType	O, RO

Table 24 – CASComponentType Additional Subcomponents

The InstanceDeclarations of the CASComponentType have additional Attributes defined in Table 25.

Source Path	Description Attribute
ActiveAirnet	Indicates which airnet is currently using this component.
Ambient	Measurements and calculations of ambient air at the topology element.
	Measured or calculated actual absolute pressure of the environment in which the component, piping
Ambient	or system is working.
AbsolutePressure	
	·
	Measured or calculated actual dew point of the environment in which the component, piping or system
Ambient	is working.
DewPoint	
	Measured or calculated actual relative humidity of the environment in which the component, piping or
Ambient	system is working.
RelativeHumidity	
Relativenutility	
	Measured or calculated actual temperature of the environment in which the component, piping or
Ambient	system is working.
Temperature	
2:Configuration	Configure the behavior of the topology element.
CoolantCircuit	Measurements and calculations of the coolant ports and delta of the topology element.
r	Enumeration of possible coolant types.
CoolantCircuit	
FluidType	
Design	Static design properties of the topology element.
ElectricalCircuit	Measurements and calculations of the electrical ports and delta of the topology element.
Events	Alarms and conditions of the topology element.
2:Identification	Identification properties of the topology element.
	Domain or for what purpose this item is used.
2:Identification	
2:DeviceClass	
2:Operational	Data for normal operation of the topology element.
2.0001010101	Actual health state of the component.
2:Operational	
HealthState	
Treatmotate	
	Actual integrated state of the component.
2:Operational	
IntegratedState	
	Actual operating state of the component.
2:Operational	
OperatingState	
ProcessFluidCircuit	Measurements and calculations of the process fluid ports and delta of the topology element.
	Enumeration of possible process fluid types.
ProcessFluidCircuit	
FluidType	
0. Chatiatian	Data fan statistica annikasticna fan the ten slams slams nt
2:Statistics	Data for statistics applications for the topology element.

Table 25 – CASComponentType Attribute values for child Nodes

7.8 ChargingSystemType ObjectType Definition

The *ChargingSystemType* shall be used as TypeDefinition for concrete charging system *Objects* and shall be used as supertype for concrete charging system *ObjectTypes*. A charging system is a pressure maintenance system that maintains a minimum pressure in a *Component*. It is formally defined in Table 26.

Attribute	Value	Value				
BrowseName ChargingSystemType						
IsAbstract	False	False				
References	Node Class BrowseName DataType TypeDefinition Other					
Subtype of the CA	Subtype of the CASComponentType defined in 7.7, i.e. inheriting the InstanceDeclarations of that Node.					

Table 26 – ChargingSystemType Definition

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

7.9 CompressorType ObjectType Definition

The *CompressorType* is the representation of a compressor and extends its supertype by specific *Nodes*. According to EN 1012-1/ISO/DIS 18623-1, a compressor compresses a gas or vapor media to a pressure higher than that at the inlet. It is illustrated in Figure 23 and formally defined in Table 27.

Figure 23 – CompressorType Illustration

Attribute	Value	Value					
BrowseName	CompressorTy	CompressorType					
IsAbstract	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of the CASComponentType defined in 7.7, i.e. inheriting the InstanceDeclarations of that Node.							
The following node	s override nodes	s added by the CASComponentTyp	pe				
0:HasComponent	Object	Design		CompressorDesignType	0		
0:HasComponent	Object	2:Identification		4:MachineIdentificationType	Μ		
0:HasComponent	Object	2:Operational		CompressorOperationalType	0		
0:HasComponent	Object	2:Statistics		CompressorStatisticsType	0		

Table 27 – CompressorType Definition

The InstanceDeclarations of the CompressorType have additional Attributes defined in Table 28.

Table 28 – CompressorType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
2:Identification 2:DeviceClass	"Compressor"	Domain or for what purpose this item is used.

7.10 ConverterType ObjectType Definition

The *ConverterType* is the representation of a converter and extends its supertype by specific *Nodes*. A converter eliminates hydrocarbons from a compressed air flow by catalytic reaction with oxygen into H₂O and CO₂. It is illustrated in Figure 24 and formally defined in Table 29.

Figure 24 – ConverterType Illustration

Attribute	Value					
BrowseName	ConverterType	ConverterType				
IsAbstract	False					
References	Node Class	Node Class BrowseName DataType TypeDefinition				
Subtype of the CAS	SComponentTyp	e defined in 7.7, i.e. inheriting the	InstanceDeclaratio	ns of that Node.	1	
The following node	s override nodes	added by the CASComponentTy	pe			
0:HasComponent	Object	Design		ConverterDesignType	0	
0:HasComponent	Object	2:Operational		ConverterOperationalType	0	

Table 29 – ConverterType Definition

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

7.11 CoolingSystemType ObjectType Definition

The *CoolingSystemType* shall be used as TypeDefinition for concrete cooling system *Objects* and shall be used as supertype for concrete cooling system *ObjectTypes*. A cooling system removes heat from a *Component* or the air flow in a *Compressed Air* System. It is formally defined in Table 30.

Attribute	Value					
BrowseName	CoolingSystem	CoolingSystemType				
IsAbstract	False	False				
References	Node Class	Node Class BrowseName DataType TypeDefinition Other				
Subtype of the CASComponentType defined in 7.7, i.e. inheriting the InstanceDeclarations of that Node.						

Table 30 – CoolingSystemType Definition

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

7.12 DrainType ObjectType Definition

The *DrainType* is the representation of a condensate drain and extends its supertype by specific *Nodes*. Derived from EN 1012-1/ISO/DIS 18623-1, a condensate drain minimizes the accumulation of stagnant liquid in a *Compressed Air System*. It is illustrated in Figure 25 and formally defined in Table 31.

Table 31 – DrainType Definition

Attribute	Value				
BrowseName	DrainType				
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the CAS	ComponentTyp	e defined in 7.7, i.e. inheriting the	InstanceDeclarat	ions of that Node.	
The following nodes	override nodes	added by the CASComponentTy	pe		
0:HasComponent	Object	Design		DrainDesignType	0
0:HasComponent	Object	2:Operational		DrainOperationalType	0
0:HasComponent	Object	ProcessFluidCircuit		FluidCircuitType	0

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

The InstanceDeclarations of the DrainType have additional Attributes defined in Table 32.

Table 32 – DrainType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
ProcessFluidCircuit FluidType	1	Enumeration of possible process fluid types.

7.13 DryerType ObjectType Definition

The *DryerType* is the representation of a dryer and extends its supertype by specific *Nodes*. According to ISO 5598, a dryer reduces the moisture vapor content of the compressed air. It is illustrated in Figure 26 and formally defined in Table 33.

Figure 26 – DryerType Illustration

Table 33 –	DryerType	Definition
------------	-----------	------------

Attribute	Value	Value				
BrowseName	DryerType	DryerType				
IsAbstract	False					
References	Node Class					
Subtype of the CAS	ComponentTy	pe defined in 7.7, i.e. inhe	riting the InstanceDeclara	tions of that Node.		
The following nodes	override node	es added by the CASCom	ponentType			
0:HasComponent	Object	Design		DryerDesignType	0	
0:HasComponent	Object	2:Operational		DryerOperationalType	0	

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

7.14 FilterType ObjectType Definition

The *FilterType* is the representation of a filter and extends its supertype by specific *Nodes*. According to ISO 12500-1, a filter separates or removes contamination from a compressed air or gas stream. It is illustrated in Figure 27 and formally defined in Table 34.

Figure 27 – FilterType Illustration

Table 34 – FilterType Definition

Attribute	Value					
BrowseName	FilterType	ilterType				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the CAS	ComponentTy	pe defined in 7.7, i.e. inhe	riting the InstanceDeclarati	ions of that Node.		
The following nodes	are override f	rom CASComponentType				
0:HasComponent	Object	Design		FilterDesignType	0	

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

7.15 HeatRecoverySystemType ObjectType Definition

The *HeatRecoverySystemType* shall be used as TypeDefinition for concrete heat recovery system *Objects* and shall be used as supertype for concrete heat recovery system *ObjectTypes*. Derived from VDMA EcoLexicon, a heat recovery system removes heat from a compressor for further utilization, such as room heating. It is formally defined in Table 35.

Attribute	Value	/alue				
BrowseName	HeatRecoveryS	HeatRecoverySystemType				
IsAbstract	False	False				
References	Node Class BrowseName DataType TypeDefinition Other					
Subtype of the CASComponentType defined in 7.7, i.e. inheriting the InstanceDeclarations of that Node.						

Table 35 – HeatRecoverySystemType Definition

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

7.16 ReceiverType ObjectType Definition

The *ReceiverType* is the representation of a receiver and extends its supertype by specific *Nodes*. According to DIN EN 13445-1, a receiver is a pressure vessel with a housing and its direct attachments up to the coupling point connecting it to other equipment, designed and built to contain fluids under pressure. It is illustrated in Figure 28 and formally defined in Table 36.

Figure 28 – ReceiverType Illustration

Table 36 – ReceiverType Definition

Attribute	Value	Value				
BrowseName	ReceiverT	ReceiverType				
IsAbstract	False	alse				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the CAS	ComponentTy	/pe defined in 7.7, i.e. inhe	eriting the InstanceDeclarati	ons of that Node.		
The following nodes	override node	es added by the CASCom	ponentType			
0:HasComponent	Object	Design		ReceiverDesignType	0	

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

7.17 SensorType ObjectType Definition

The *SensorType* is the representation of a sensor and extends its supertype by specific *Nodes*. According to ISO 5598, a sensor is a device that detects a condition in a system or component and produces an output signal. It is illustrated in Figure 29 and formally defined in Table 37.

Figure 29 – SensorType Illustration

Table 37 – SensorType Definition

Attribute	Value	Value				
BrowseName	SensorTyp	De				
IsAbstract	False					
References	Node Class					
Subtype of the CAS	ComponentTy	pe defined in 7.7, i.e. inheritin	g the InstanceDeclara	tions of that Node.		
0:HasComponent	Object	Calibration		CalibrationType	0	
0:HasComponent	Object	2:Maintenance		MaintenanceType	0	
The following nodes	override nod	s added by the CASCompon	entType			
0:HasComponent	Object	Design		SensorDesignType	0	
0:HasComponent	Object	2:Operational		OperationalType	0	

The optional *FunctionalGroup* Calibration provides *Variables* useful for the documentation of the sensor calibration.

The optional *FunctionalGroup* Maintenance provides *Variables* useful for the documentation of the sensor maintenance.

The optional *FunctionalGroup* Operational is extended with an *OptionalPlaceholder* <Quantity> for the sensor *Quantity*. When instantiating a SensorType, the DataType of the <Quantity> instance must be changed to a concrete *DataType*. The TypeDefinition may be chosen from BaseAnalogType and its subtypes.

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType,

depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

The components of the SensorType have additional subcomponents defined in Table 38.

Table 38 – SensorType Additional Subcomponents

Source Path	References	NodeClass	BrowseName	DataType	TypeDefinition	Other
2:Operational	0:HasComponent	Variable	<quantity></quantity>	0:Number	0:BaseAnalogType	OP, RO

The InstanceDeclarations of the SensorType have additional Attributes defined in Table 39.

Table 39 – SensorType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
Calibration		Dates important for the calibration of a sensor.
2:Maintenance		Servicing intervals for the sensor.
2:Operational <quantity></quantity>		Measurement or calculation performed by a sensor.

7.18 SeparatorType ObjectType Definition

The *SeparatorType* is the representation of a condensate separator and extends its supertype by specific *Nodes*. According to ISO 5598, a condensate separator retains contaminants by means other than a filter element, e.g. specific gravity, magnetism, chemical properties, density. It is illustrated in Figure 30 and formally defined in Table 40.

Figure 30 – SeparatorType Illustration

Table 40 – SeparatorType Definition

Attribute	Value	Value				
BrowseName	SeparatorTy	SeparatorType				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the CAS	Subtype of the CASComponentType defined in 7.7, i.e. inheriting the InstanceDeclarations of that Node.					
The following nodes	override nodes	added by the CASCompone	ntType			
0:HasComponent	Object	Design		SeparatorDesignType	0	
0:HasComponent	Object	ProcessFluidCircuit		FluidCircuitType	0	

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

The InstanceDeclarations of the SeparatorType have additional Attributes defined in Table 41.

Table 41 – SeparatorType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute	
	1	Enumeration of possible process fluid types.	
ProcessFluidCircuit			
FluidType			

7.19 ValveType ObjectType Definition

The *ValveType* is the representation of a valve and extends its supertype by specific *Nodes*. Valves control the flow and passage of fluids through a piping network. It is illustrated in Figure 31 and formally defined in Table 42.

Figure 31 – ValveType Illustration

Table 42 – ValveType	Definition
----------------------	------------

Attribute	Value	Value				
BrowseName	ValveType	ValveType				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the CAS	SComponent	<i>Type</i> defined in 7.7, i.e. inh	neriting the InstanceDecla	rations of that Node.		
The following node	s override no	des added by the CASCor	mponentType			
0:HasComponent	Object	Design		ValveDesignType	0	
0:HasComponent	Object	2:Operational		ValveOperationalType	0	

When instantiating this *ObjectType* the Identification *Object* shall use one of the concrete subtypes of the MachineryItemIdentificationType, either MachineIdentificationType or MachineryComponentIdentificationType, depending on the concrete usage of this *Component*. The ModellingRule of the *Property* DeviceClass remains as mandatory and its Value *Attribute* shall match the value stated in Table 9.

7.20 ElectricalQuantitiesType ObjectType Definition

The *ElectricalQuantitiesType* provides *Variables* for *Quantities* of electrical properties and is formally defined in Table 43.

Attribute	Value	Value				
BrowseName	ElectricalQuanti	tiesType				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Ba	seObjectType defir	ed in OPC 10000-5.				
0:HasInterface	ObjectType 3:IStatisticsType Defined in OPC 10000-200		2 10000-200			
0:HasComponent	Variable	ApparentPower	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	Current	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	Energy	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	Power	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	Voltage	0:Double	0:BaseAnalogType	O, RO	
Applied from 3:/Stat	isticsType					
0:HasComponent	Method	3:ResetStatistics	See 3:/Statistic	sType	0	
0:HasProperty	Variable	3:StartTime	0:DateTime	0:PropertyType	O, RO	

Table 43 – ElectricalQuantitiesType Definition

The *Variable* StartTime and the *Method* ResetStatistics are defined by the IStatisticsType and shall be used as defined by the Interface.

The *InstanceDeclarations* of the ElectricalQuantitiesType have additional *Attributes* defined in Table 44.

Table 44 – ElectricalQuantitiesT	pe Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
ApparentPower		Measured or calculated actual apparent power consumption including all auxiliary components (e.g. on a compressor including fans, controller,).
Current		Measured or calculated actual root mean square of the electric power consumption including all auxiliary components (e.g. on a compressor including fans, controller,).
Energy		Measured or calculated accumulated electrical energy consumed including all auxiliary components (e.g. on a compressor including fans, controller,) since last reset.
Power		Measured or calculated actual electric real power consumption including all auxiliary components (e.g. on a compressor including fans, controller,).
Voltage		Measured or calculated actual root mean square of the voltage applied including all auxiliary components (e.g. on a compressor including fans, controller,).

7.21 ElectricalCircuitType ObjectType Definition

The *ElectricalCircuitType* provides Objects that are used to group common *Quantities* of electrical properties and is formally defined in Table 51.

Attribute	Value	Value				
BrowseName	ElectricalCircu	ElectricalCircuitType				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Base	eObjectType define	ed in OPC 10000-5.				
0:HasComponent	Object	<other></other>		ElectricalQuantitiesType	OP	
0:HasComponent	Object	Delta		ElectricalQuantitiesType	0	
0:HasComponent	Object	Input		ElectricalQuantitiesType	0	
0:HasComponent	Object	Output		ElectricalQuantitiesType	0	

Table 45 – ElectricalCircuitType Definition

The OptionalPlaceholder < Other> is used to add manufacturer or system specific groups to an electrical circuit.

The InstanceDeclarations of the ElectricalCircuitType have additional Attributes defined in Table 46.

Table 46 – ElectricalCircuitType Attribute values for child Nodes

Source Path	Description Attribute
<other></other>	Placeholder for manufacturer or system specific groups.
Delta	Measured or calculated deltas of electrical properties between inlet and outlet of the component.
Input	Measured or calculated electrical properties at the input of the component.
Output	Measured or calculated electrical properties at the output of the component.

7.22 FluidQuantitiesType ObjectType Definition

The FluidQuantitiesType provides Variables and Objects for fluid Quantities and is formally defined in Table 47.

Table 47 – FluidQuantitiesType Definition

Attribute	Value	Value				
BrowseName	FluidQuantitie	FluidQuantitiesType				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Base	ObjectType define	ed in OPC 10000-5.				
0:HasInterface	ObjectType	3:IStatisticsType	Defined in OPC	: 10000-200		
0:HasComponent	Variable	<quantity></quantity>	0:Number	0:BaseAnalogType	OP, RO	
0:HasComponent	Variable	AbsolutePressure	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	AccumulatedVolume	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	DewPoint	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	GaugePressure	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	MassFlowRate	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	OilConcentration	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Object	ParticlesPerSizeRange		ParticleType	0	
0:HasComponent	Variable	RelativeHumidity	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	Temperature	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	Volume	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	VolumeFlowRate	0:Double	0:BaseAnalogType	O, RO	
·						
Applied from 3:/Statis	ticsType					
0:HasComponent	Method	3:ResetStatistics	See 3:/Statistic	sType	0	
0:HasProperty	Variable	3:StartTime	0:DateTime	0:PropertyType	O, RO	

The *Variable* StartTime and the *Method* ResetStatistics are defined by the IStatisticsType and shall be used as defined by the Interface.

The *OptionalPlaceholder* <Quantity> is used to add additional *Quantities* to this group. In this case the abstract *DataType* 0:Number must be changed to a non-abstract *DataType*. The TypeDefinition may be chosen from BaseAnalogType and its subtypes.

The InstanceDeclarations of the FluidQuantitiesType have additional Attributes defined in Table 48.

Table 48 – FluidQuantitiesType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
<quantity></quantity>		Manufacturer or system specific measurements or calculations.
AbsolutePressure		Measured or calculated actual absolute pressure of a fluid.
AccumulatedVolume		Measured or calculated accumulated volume of a fluid since last reset.
DewPoint		Measured or calculated actual dew point of a fluid.
GaugePressure		Measured or calculated actual gauge pressure of a fluid.
MassFlowRate		Measured or calculated actual mass flow rate of a fluid.
OilConcentration		Measured or calculated actual oil concentration of a fluid.
ParticlesPerSizeRange		Collection of particle counts for a fluid according to ISO 8573.
RelativeHumidity		Measured or calculated actual relative humidity of a fluid.
Temperature		Measured or calculated actual temperature of a fluid.
Volume		Measured or calculated actual volume of a fluid.
VolumeFlowRate		Measured or calculated actual volume flow rate of a fluid.

7.23 ParticleType ObjectType Definition

The *ParticleType* provides *Variables* for particle counting in a fluid in three categories according to ISO 8573-1:2010-04 Compressed air – Part 1: Contaminants and purity classes. It is formally defined in Table 49.

Attribute	Value					
BrowseName	ParticleType	ParticleType				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Base	ObjectType define	ed in OPC 10000-5.				
0:HasComponent	Variable	Fine	0:UInt64	0:BaseAnalogType	M, RO	
0:HasComponent	Variable	Large	0:UInt64	0:BaseAnalogType	M, RO	
0:HasComponent	Variable	Medium	0:UInt64	0:BaseAnalogType	M, RO	

The InstanceDeclarations of the ParticleType have additional Attributes defined in Table 50.

Table 50 – ParticleType Attribute values for child Nodes

Source Path	Value Attribute Description Attribute	
Fine		Particle count of sizes from 0.1 to 0.5 um.
Large		Particle count of sizes from 1.0 to 5.0 um.
Medium		Particle count of sizes from 0.5 to 1.0 um.

7.24 FluidCircuitType ObjectType Definition

The *FluidCircuitType* provides *Objects* that are used to group fluid *Quantities* and is formally defined in Table 51.

Attribute	Value	Value				
BrowseName	FluidCircuitTy	FluidCircuitType				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Base	e <i>ObjectType</i> defin	ed in OPC 10000-5.				
0:HasComponent	Object	<other></other>		FluidQuantitiesType	OP	
0:HasComponent	Object	Delta		FluidQuantitiesType	0	
0:HasComponent	Variable	FluidType	FluidTypeEnum	0:DataItemType	O, RO	
0:HasComponent	Object	Inlet		FluidQuantitiesType	0	
0:HasComponent	Object	Outlet		FluidQuantitiesType	0	

Table 51 – FluidCircuitType Definition

The *OptionalPlaceholder Object* <Other> is used to add manufacturer or system specific groups to a fluid circuit. The *InstanceDeclarations* of the FluidCircuitType have additional *Attributes* defined in Table 52.

Table 52 – FluidCircuitType Attribute values for child Nodes

Source Path	Description Attribute
<other></other>	Placeholder for manufacturer or system specific groups.
Delta	Measured or calculated deltas of fluid properties between inlet and outlet of the component.
FluidType	Enumeration of possible fluid types.
Inlet	Measured or calculated fluid properties at the inlet of the component.
Outlet	Measured or calculated fluid properties at the outlet of the component.

7.25 AnalysisType ObjectType Definition

The *AnalysisType* provides *Objects* and *Methods* that are used for invoking an analysis on the *Main Control System* and is formally defined in Table 53.

Attribute	Value					
BrowseName	AnalysisType	InalysisType				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:BaseObjectType defined in OPC 10000-5.						
0:HasComponent	Object	OutputFile		0:FileType	0	
0:HasComponent	Method	Trigger	See 7.25.1		0	

Table 53 – AnalysisType Definition

The optional *Object* OutputFile shall contain the result of an analysis if the *Main Control System* can provide a file in the *AddressSpace* of the OPC UA *Server*. If not, this *Object* must not be instantiated.

The results of an analysis may be submitted to the user via any communication technology. It is not necessary to provide the result in the OPC UA *AddressSpace*. However, it is recommended to do so if the *Server* is capable of such an operation. An analysis output file may be any kind of file. The manufacturer shall define the provided file type and any other necessary information.

The optional Method Trigger is used to invoke the generation of an analysis report on the Main Control System.

To define a parameterizable analysis, the manufacturer or integrator shall define a subtype of this AnalysisType. The *Method* Trigger shall be overridden, and the required parameters shall be added as InputArguments. The manufacturer or integrator may add *Variables* or *Properties* to the new subtype to represent the parameters.

The InstanceDeclarations of the AnalysisType have additional Attributes defined in Table 54.

Table 54 – AnalysisType Attribute values for child Nodes

Source Path	Description Attribute	
OutputFile	File containing the result of an analysis.	
Trigger	Triggers the analysis on the MCS in a compressed air system.	

7.25.1 Trigger

The *Method* Trigger is used to trigger an analysis on the *Main Control System*. The signature of this *Method* is specified below. There are no *InputArguments* or *OutputArguments* defined. Its formal representation in the *AddressSpace* is defined in Table 55.

Signature

```
Trigger (
);
```

Attribute	Value				
BrowseName	Trigger				
References	Node Class	BrowseName	DataType	TypeDefinition	ModellingRule

7.26 AnalysesType ObjectType Definition

The *AnalysesType* provides *Objects* for invoking analyses performed by the *Main Control System* and is formally defined in Table 56. Such analyses may be performed on *Compressed Air System* or *Airnet* level.

Attribute	Value				
BrowseName	AnalysesType	AnalysesType			
IsAbstract	False	False			
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the 2:Fund	ctionalGroupType o	defined in OPC 10000-100, i.e	e. inheriting the Ins	stanceDeclarations of that	Node.
0:HasComponent	Object	<analysis></analysis>		AnalysisType	OP
0:HasComponent	Object	<prefabanalysis></prefabanalysis>		0:FileType	OP
0:HasComponent	Object	EnergyReportISO50001		AnalysisType	0

Table 56 – AnalysesType Definition

The OptionalPlaceholder Object <PrefabAnalyses> can be used to provide results of analyses performed by the manufacturer, automatically recurring analyses performed by the *Main Control System*, or other analyses that do not require a trigger and an output file.

The optional Object EnergyReportISO50001 can be used as a pre-parameterized analysis for generating an energy report according to ISO 50001. The parameterization for this analysis should be provided on the *Main Control System*.

The InstanceDeclarations of the AnalysesType have additional Attributes defined in Table 57.

Table 57 – AnalysesType Attribute values for child Nodes

Source Path	Description Attribute		
<analysis></analysis>	Manufacturer or system specific analyses.		
<prefabanalysis></prefabanalysis>	Prefabricated analysis provided by the MCS.		
EnergyReportISO50001	Energy report according to ISO 50001.		

7.27 CalibrationType ObjectType Definition

The *CalibrationType* provides *Variables* useful for the calibration of a sensor and is formally defined in Table 58.

Attribute	Value	Value						
BrowseName	CalibrationTyp	CalibrationType						
IsAbstract	False							
References	Node Class	Node Class BrowseName DataType TypeDefinition Other						
Subtype of the 2:FunctionalGroupType defined in OPC 10000-100, i.e. inheriting the InstanceDeclarations of that Node								
0:HasComponent	Variable	LastCalibrationDate	0:DateTime	0:DataItemType	M, RO			
0:HasComponent	Variable	NextCalibrationDate	0:DateTime	0:DataItemType	M, RO			

The InstanceDeclarations of the CalibrationType have additional Attributes defined in Table 59.

Table 59 – CalibrationType Attribute values for child Nodes

Source Path	Description Attribute
LastCalibrationDate	Date when the sensor was last calibrated.
NextCalibrationDate	Date when the sensor is scheduled for the next calibration.

7.28 CASIdentificationType ObjectType Definition

The CASIdentificationType provides Properties for basic identification purposes for Compressed Air Systems and Airnets. It is formally defined in Table 60.

Attribute	Value	Value							
BrowseName	CASIdentificat	CASIdentificationType							
IsAbstract	False	False							
References	Node Class	Node Class BrowseName DataType TypeDefinition Other							
Subtype of the 2:Fu	unctionalGroupTyp	e defined in OPC 10000-100, i.e	e. inheriting the Instancel	Declarations of that No	de				
0:HasInterface	ObjectType	ObjectType 2:ITagNameplateType Defined in OPC 10000-100							
Applied from 2:ITag	gNameplateType								
0:HasProperty	Variable	/ariable 2:AssetId 0:String 0:PropertyType O, RW							
0:HasProperty	Variable	2:ComponentName	0:LocalizedText	0:PropertyType	O, RW				

Table 60 – CASIdentificationType Definition

The *Properties* AssetId and ComponentName are defined by the ITagNameplateType and shall be used as defined by the Interface.

7.29 ConfigurationType ObjectType Definition

The *ConfigurationType* provides a framework for *Nodes* aimed at configuring the behavior of a *CASPart*. This specification defines configuration properties for *Airnets* and the *Main Control System*. There are no configuration properties defined for *Components*. It is formally defined in Table 61.

Table 61 – ConfigurationType Definition

Attribute	Value							
BrowseName	Configuration	ConfigurationType						
IsAbstract	False							
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the 2:Fund	ctionalGroupType o	defined in OPC 10000-100, i.e	e. inheriting the Ins	tanceDeclarations of that I	Node.			
0:HasSubtype	ObjectType	AirnetConfigurationType	Defined in 7.30					
0:HasSubtype	ObjectType	MCSConfigurationType	Defined in 7.31					

7.30 AirnetConfigurationType ObjectType Definition

. . .

The *AirnetConfigurationType* provides *Variables* for configuring the behavior of an *Airnet* and is formally defined in Table 62.

Attribute	Value								
BrowseName	AirnetConfigu	AirnetConfigurationType							
IsAbstract	False	False							
References	Node Class	BrowseName	DataType	TypeDefinition	Other				
Subtype of the Configuration Type defined in 7.28, i.e. inheriting the InstanceDeclarations of that Node.									
0:HasComponent	Variable	OperatingModes	0:UInt16	0:MultiStateDiscreteType	O, RW				
0:HasComponent	Variable	OperatingProfiles	0:UInt16	0:MultiStateDiscreteType	M, RW				

Table 62 – AirnetConfigurationType Definition

The optional *Variable* OperatingModes provides manufacturer or system specific operating modes of an *Airnet*. When instantiating the AirnetConfigurationType, the manufacturer or system integrator shall add specific operating modes to the EnumStrings *Property*. However, Value 0 is already predefined as stopped operating mode. Examples for other operating modes are energy or maintenance optimized operating modes which are not specified by this specification.

The mandatory *Variable* OperatingProfiles provides manufacturer or system specific operating profiles of an *Airnet*. On the *Main Control System*, operating profiles are stored as sets of parameters for parameterizing the behavior of an Airnet. When instantiating the AirnetConfigurationType, the manufacturer or system integrator shall add specific operating profiles to the EnumStrings *Property*. An operating profile may change the

OperatingMode *Variable*. An example for such profiles is the weekday profile, which change the operating mode and/or other parameters depending on the weekday.

The InstanceDeclarations of the AirnetConfigurationType have additional Attributes defined in Table 63.

Source Path	Value Attribute	Description Attribute
OperatingModes		Configured operating mode for an airnet in a compressed air system.
OperatingModes 0:EnumStrings	stopped	Available operating modes for an airnet in a compressed air system.
OperatingProfiles		Configured operating profile for an airnet in a compressed air system.
OperatingProfiles 0:EnumStrings		Available operating profiles for an airnet in a compressed air system.

Table 63 – AirnetConfigurationType Attribute values for child Nodes

7.31 MCSConfigurationType ObjectType Definition

The *MCSConfigurationType* provides *Objects* and *Methods* for configuring the behavior of the *Compressed Air System* and is formally defined in Table 64.

Attribute	Value	Value						
BrowseName	MCSConfigu	MCSConfigurationType						
IsAbstract	False	False						
References	Node Class							
Subtype of the Config	<i>urationType</i> de	fined in 7.28, i.e. inheriting the	InstanceDeclara	tions of that Node.				
0:HasComponent	Object	CommunicationSettings		CommunicationSettingsType	0			
0:HasComponent	Object	ConfigurationFile		0:FileType	0			
0:HasComponent	Method	LoadConfigurationFile	See 7.31.1		0			
0:HasComponent	Method	SaveConfigurationFile	See 7.31.2		0			

Table 64 – MCSConfigurationType Definition

The optional *Object* CommunicationSettings is used to display the ethernet communication settings of the OPC UA connection point of the *Main Control System*.

The optional *Object* ConfigurationFile of the FileType shall be used to store the *Main Control System* configuration in the OPC UA *AddressSpace*. This configuration file may be uploaded to or downloaded from the *Main Control System* using the described Methods. It should be a persistent representation of the currently active configuration for the *Compressed Air System*.

The optional *Method* LoadConfigurationFile is the trigger for uploading the configuration stored in the ConfigurationFile *Object* to the *Main Control System*.

The optional *Method* SaveConfigurationFile is the trigger for downloading the current configuration from the *Main Control System* and store it in the ConfigurationFile *Object*.

The InstanceDeclarations of the MCSConfigurationType have additional Attributes defined in Table 65.

Source Path	Description Attribute
CommunicationSettings	OPC UA communication settings of the MCS in a compressed air system.
ConfigurationFile	Configuration file for the MCS in a compressed air system.
LoadConfigurationFile	Loads the configuration stored in ConfigurationFile to the MCS.
SaveConfigurationFile	Saves the current configuration of the MCS to the stored ConfigurationFile.

Table 65 – MCSConfigurationType Attribute values for child Nodes

7.31.1 LoadConfigurationFile

The *Method LoadConfigurationFile* is used to load the configuration file stored in *ConfigurationFile* into the *Main Control System*. The signature of this *Method* is specified below. There are no *InputArguments* or *OutputArguments* defined. Its formal representation in the *AddressSpace* is defined in Table 66.

Signature

LoadConfigurationFile (
);

Table 66 – LoadConfigurationFile Method AddressSpace Definition

Attribute	Value					
BrowseName	LoadConfigur	LoadConfigurationFile				
References	Node Class	BrowseName	DataType	TypeDefinition	ModellingRule	

7.31.2 SaveConfigurationFile

The *Method* SaveConfigurationFile is used to save the current configuration of the *Main Control System* to the file stored in ConfigurationFile. The signature of this *Method* is specified below. There are no *InputArguments* or *OutputArguments* defined. Its formal representation in the *AddressSpace* is defined in Table 67.

Signature

```
SaveConfigurationFile (
);
```

Table 67 – SaveConfigurationFile Method AddressSpace Definition

Attribute	Value	Value						
BrowseName	SaveConfigur	SaveConfigurationFile						
References	Node Class	BrowseName	DataType	TypeDefinition	ModellingRule			

7.32 CommunicationSettingsType ObjectType Definition

The *CommunicationSettingsType* provides *Variables* for the communication settings of the *Main Control System* and is formally defined in Table 68.

Attribute	Value				
BrowseName	CommunicationSettingsType				
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the 0:Bas	eObjectType defin	ed in OPC 10000-5.			
0:HasProperty	Variable	DefaultGateway	0:String	0:PropertyType	O, RO
0:HasComponent	Variable	Dhcp	0:Boolean	0:TwoStateDiscreteType	O, RO
0:HasProperty	Variable	DnsServer	0:String	0:PropertyType	0, R0
0:HasProperty	Variable	DomainName	0:String	0:PropertyType	O, RO
0:HasProperty	Variable	Hostname	0:String	0:PropertyType	O, RO
0:HasProperty	Variable	IpAddress	0:String	0:PropertyType	M, RO
0:HasProperty	Variable	IpVersion	IpVersionEnum	0:PropertyType	O, RO
0:HasComponent	Variable	MacAddress	0:String	0:BaseDataVariableType	0, R0
0:HasProperty	Variable	SubnetMask	0:String	0:PropertyType	O, RO
The InstanceDeclarations of the CommunicationSettingsType have additional Attributes defined in Table 69.

Source Path	Value Attribute	Description Attribute
DefaultGateway		IP Address of the default gateway used by the MCS.
Dhcp		States if DHCP is enabled or disabled on the MCS.
Dhcp 0:FalseState	"DHCP disabled"	
Dhcp 0:TrueState	"DHCP enabled"	
DnsServer		IP Address of the DNS server used by the MCS.
DomainName		Domain name the MCS is assigned to.
Hostname		Host name of the MCS.
IpAddress		IP address of the MCS.
IpVersion		Version of the internet protocol used for the MCS.
MacAddress		MAC address of the NIC of the MCS.
SubnetMask		Subnet mask of the MCS.

 Table 69 – CommunicationSettingsType Attribute values for child Nodes

7.33 DesignType ObjectType Definition

The *DesignType* provides a framework and *Variables* for static design information of *Components* and is formally defined in Table 70.

Attribute	Value				
BrowseName	DesignType				
IsAbstract	False				
References	Node	BrowseName	DataType	TypeDefinition	Other
	Class				
Subtype of the 2:Fu	nctionalGroupT	ype defined in OPC 10000-100), i.e. inheriting the Instance	Declarations of that Node	
0:HasSubtype	ObjectType	CompressorDesignType	Defined in 7.34		
0:HasSubtype	ObjectType	ConverterDesignType	Defined in 7.35		
0:HasSubtype	ObjectType	DrainDesignType	Defined in 7.36		
0:HasSubtype	ObjectType	DryerDesignType	Defined in 7.37		
0:HasSubtype	ObjectType	FilterDesignType	Defined in 7.38		
0:HasSubtype	ObjectType	ReceiverDesignType	Defined in 7.39		
0:HasSubtype	ObjectType	SensorDesignType	Defined in 7.40		
0:HasSubtype	ObjectType	SeparatorDesignType	Defined in 7.41		
0:HasSubtype	ObjectType	ValveDesignType	Defined in 7.42		
0:HasComponent	Variable	ComponentClass	0:Enumeration	0:DataItemType	0, R0

Table 70 – DesignType Definition

The *InstanceDeclarations* of the DesignType have additional *Attributes* defined in Table 71.

Table 71 – DesignType Attribute values for child Nodes

Source Path	Description Attribute
ComponentClass	Enumeration of possible types of the component's device class.

7.34 CompressorDesignType ObjectType Definition

The *CompressorDesignType* extends its supertype by compressor specific *Variables* and is formally defined in Table 72.

Attribute	Value				
BrowseName	CompressorDe	esignType			
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the Des	<i>ignType</i> defined i	in 7.33, i.e. inheriting the	InstanceDeclarations of that No	ode	
0:HasComponent	Variable	DisplacementType	DisplacementTypeEnum	0:DataItemType	0, R0
0:HasComponent	Variable	LubricationType	LubricationTypeEnum	0:DataItemType	0, R0
0:HasComponent	Variable	NumberOfStages	0:UInt16	0:DataItemType	0, R0
0:HasComponent	Variable	VariableFlow	0:Boolean	0:TwoStateDiscreteType	O, RO
The following nodes	s override proper	ties and components of th	he <i>DesignType</i>		
0:HasComponent	Variable	ComponentClass	CompressorTypeEnum	0:DataItemType	O, RO

Table 72 – CompressorDesignType Definition

The InstanceDeclarations of the CompressorDesignType have additional Attributes defined in Table 73.

Table 73 – CompressorDesignType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
ComponentClass		Enumeration of possible compressor types.
DisplacementType		Enumeration of possible displacement types.
LubricationType		Enumeration of possible lubrication types for the compression process of a compressor.
NumberOfStages		Number of stages the compressor has available.
VariableFlow		Indicates if a compressor has a variable or fixed flow.
VariableFlow 0:FalseState	'Fixed flow' means the product offers no control for changing the volume flow independent of pressure.	
VariableFlow 0:TrueState	'Variable flow' means the compressor package allows an intentional change in volume flow rate, most obviously by VSD but also by adjustable guide vanes in turbo compressors or by valve controls in piston compressors or other means.	

7.35 ConverterDesignType ObjectType Definition

The *ConverterDesignType* extends its supertype by converter specific *Variables* and is formally defined in Table 74.

Attribute	Value	Value			
BrowseName	ConverterDesi	gnType			
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the Des	<i>ignType</i> defined i	in 7.33, i.e. inheriting the	InstanceDeclarations of tha	t Node	
The following node:	s override proper	ties and components of t	the DesignType		
0:HasComponent	Variable	ComponentClass	ConverterTypeEnum	0:DataItemType	O, RO

Table 74 – ConverterDesignType Definition

The InstanceDeclarations of the ConverterDesignType have additional Attributes defined in Table 75.

Table 75 – ConverterDesignType Attribute values for child Nodes

Source Path	Description Attribute
ComponentClass	Enumeration of possible converter types.

7.36 DrainDesignType ObjectType Definition

The *DrainDesignType* extends its supertype by condensate drain specific *Variables* and is formally defined in Table 76.

Table 76 – DrainDesignType Definition

Attribute	Value				
BrowseName	DrainDesignT	уре			
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the De	s <i>ignType</i> defined	in 7.33, i.e. inheriting th	e InstanceDeclarations of t	hat Node	
The following node	es override prope	rties and components of	f the DesignType		
0:HasComponent	Variable	ComponentClass	DrainTypeEnum	0:DataItemType	O, RO

The InstanceDeclarations of the DrainDesignType have additional Attributes defined in Table 77.

Table 77 – DrainDesignType Attribute values for child Nodes

Source Path	Description Attribute
ComponentClass	Enumeration of possible condensate drain types.

7.37 DryerDesignType ObjectType Definition

The DryerDesignType extends its supertype by dryer specific Variables and is formally defined in Table 78.

Attribute	Value				
BrowseName	DryerDesignTy	ре			
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the Des	<i>ignType</i> defined i	n 7.33, i.e. inheriting the Instance	Declarations of that Noo	le	
0:HasComponent	Variable	LowestAmbientTemperature	0:Double	0:BaseAnalogType	O, RO
The following nodes	s override proper	ties and components of the <i>Desig</i>	пТуре		
0:HasComponent	Variable	ComponentClass	DryerTypeEnum	0:DataItemType	O, RO

The InstanceDeclarations of the DryerDesignType have additional Attributes defined in Table 79.

Table 79 – DryerDesignType Attribute values for child Nodes

Source Path	Description Attribute
ComponentClass	Enumeration of possible dryer types.
LowestAmbientTemperature	Lowest allowable ambient temperature for the dryer to work as intended.

7.38 FilterDesignType ObjectType Definition

The *FilterDesignType* extends its supertype by filter specific *Variables* and is formally defined in Table 80.

Table 80 – FilterDesignType Definition

Attribute	Value						
BrowseName	FilterDesignTy	ре					
IsAbstract	False						
References	Node Class	Node Class BrowseName DataType TypeDefinition Other					
Subtype of the Des	<i>ignType</i> defined	in 7.33, i.e. inheriting the Instan	ceDeclarations of that Node	e			
0:HasComponent	Variable	FilterClass	FilterClassDataType	0:DataItemType	O, RO		
The following nodes	s override proper	ties and components of the De	signType				
0:HasComponent	Variable	ComponentClass	FilterTypeEnum	0:DataItemType	O, RO		

The InstanceDeclarations of the FilterDesignType have additional Attributes defined in Table 81.

Table 81 – FilterDesignType Attribute values for child Nodes

Source Path	Description Attribute
ComponentClass	Enumeration of possible filter types.
FilterClass	Filter classes according to ISO 8573-1.

7.39 ReceiverDesignType ObjectType Definition

The *ReceiverDesignType* extends its supertype by receiver specific *Variables* and is formally defined in Table 82.

Attribute	Value						
BrowseName	ReceiverDesig	јпТуре					
IsAbstract	False						
References	Node Class	Node Class BrowseName DataType TypeDefinition Other					
Subtype of the De	s <i>ignType</i> defined	in 7.33, i.e. inheriting the Inst	anceDeclarations of that Node	9	T		
The following node	es override prope	rties and components of the <i>L</i>	DesignType				
0:HasComponent	Variable	ComponentClass	ReceiverTypeEnum	0:DataItemType	0, R0		
0:HasComponent	Variable	Volume	0:Double	0:AnalogUnitType	0, R0		

Table 82 – ReceiverDesignType Definition

The InstanceDeclarations of the ReceiverDesignType have additional Attributes defined in Table 83.

Table 83 – ReceiverDesignType Attribute values for child Nodes

Source Path	Description Attribute	
ComponentClass	Enumeration of possible receiver types.	
Volume	Total volume of the receiver.	

7.40 SensorDesignType ObjectType Definition

The SensorDesignType extends its supertype by sensor specific Variables and is formally defined in Table 84.

Attribute	Value	Value						
BrowseName	SensorDesignT	SensorDesignType						
IsAbstract	False							
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the Des	<i>ignType</i> defined i	n 7.33, i.e. inheriting th	he InstanceDeclarations of that No	de				
0:HasComponent	Variable	SensorTechnology	SensorTechnologyOptionSet	0:DataItemType	0, R0			
0:HasComponent	Variable	SoftSensor	0:Boolean	0:TwoStateDiscreteType	0, R0			
The following nodes override properties and components of the DesignType								
0:HasComponent	Variable	ComponentClass	SensorTypeEnum	0:DataItemType	O, RO			

The InstanceDeclarations of the SensorDesignType have additional Attributes defined in Table 85.

Table 85 – SensorDesignType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute		
ComponentClass		Enumeration of possible sensor types.		
SensorTechnology		Selection of sensor technologies this sensor uses.		
SoftSensor		Indicates if the sensor is a software or hardware sensor.		
SoftSensor 0:FalseState	"This sensor is a hardware sensor."			
SoftSensor 0:TrueState	"This sensor is a software sensor."			

7.41 SeparatorDesignType ObjectType Definition

The *SeparatorDesignType* extends its supertype by condensate separator specific *Variables* and is formally defined in Table 86.

Attribute	Value							
BrowseName	SeparatorDesi	SeparatorDesignType						
IsAbstract	False							
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the Desi	gnType defined	in 7.33, i.e. inheriting the	InstanceDeclarations of that	Node				
The following nodes override properties and components of the DesignType								
0:HasComponent	Variable	ComponentClass	SeparatorTypeEnum	0:DataItemType	O, RO			

Table 86 – SeparatorDesignType Definition

The InstanceDeclarations of the SeparatorDesignType have additional Attributes defined in Table 87.

Table 87 – SeparatorDesignType Attribute values for child Nodes

Source Path	Description Attribute
ComponentClass	Enumeration of possible condensate separator types.

7.42 ValveDesignType ObjectType Definition

The ValveDesignType extends its supertype by valve specific Variables and is formally defined in Table 88.

Table 88 – ValveDesignType Definition

Attribute	Value							
BrowseName	ValveDesignTy	ValveDesignType						
IsAbstract	False							
References	Node Class	Node Class BrowseName DataType TypeDefinition Other						
Subtype of the Des	<i>ignType</i> defined	in 7.33, i.e. inheriting the Instand	ceDeclarations of that Node					
0:HasComponent	Variable	Variable NumberOfPorts 0:UInt16 0:DataItemType O, RO						
The following nodes override properties and components of the DesignType								
0:HasComponent	Variable	ComponentClass	ValveTypeEnum	0:DataItemType	0, R0			

The InstanceDeclarations of the ValveDesignType have additional Attributes defined in Table 89.

Table 89 – ValveDesignType Attribute values for child Nodes

Source Path	Description Attribute
ComponentClass	Enumeration of possible valve types.
NumberOfPorts	Number of ports of a valve.

7.43 EventsType ObjectType Definition

The EventsType provides Objects for conditions of Components and is formally defined in Table 90.

Attribute	Value						
BrowseName	EventsType	EventsType					
IsAbstract	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of the 2:Fund	ctionalGroupType	defined in OPC 10000-100	, i.e. inheriting the	nstanceDeclarations of that No	de.		
0:HasComponent	Object	<event></event>		0:ConditionType	OP		
0:HasComponent	Object	EmergencyStop		0:OffNormalAlarmType	0		
0:HasComponent	Object	Service		0:OffNormalAlarmType	0		
0:HasComponent	Object	Shutdown		0:OffNormalAlarmType	0		
0:HasComponent	Object	Warning		0:OffNormalAlarmType	0		

Table 90 – EventsType Definition

The *OptionalPlaceholder Object* <Event> is used to add additional conditions to an instance of the EventsType. In this case a concrete subtype of the abstract ConditionType has to be used as TypeDefinition.

The *InstanceDeclarations* of the EventsType have additional *Attributes* defined in Table 91.

Source Path	Description Attribute		
<event></event>	Manufacturer or system specific conditions.		
EmergencyStop	Indicating an emergency stop of a component.		
Service	Indicates that a component requires service.		
Shutdown	Indicating a shutdown of a component.		
Warning	Indicating a general warning of a component.		

When instantiating this EventsType, specific severities shall be assigned to each event or condition. The severity ranges as well as the states for each *InstanceDeclaration* of the EventsType are defined in Table 92.

Source Path	Active	Inactive	Severity
<event></event>			
EmergencyStop	Emergency stop is pressed, or emergency stop alarm is active / has not been acknowledged.	Emergency stop is released, and emergency stop alarm is not active and has been acknowledged.	1 – 1000
Service	Machine requires service.	Machine does not require service.	1 – 1000
Shutdown	Machine is in shutdown, summary of all shutdown alarms.	No shutdown alarm is active, and all shutdown alarms have been acknowledged.	801 – 1000
Warning	Machine is in warning, summary of all warning alarms.	No warning is active, and all warnings have been acknowledged.	1 – 800

7.44 MaintenanceType ObjectType Definition

The *MaintenanceType* provides *Variables* useful for sensor maintenance and is formally defined in Table 93.

Table 93 – MaintenanceType Definition	
---------------------------------------	--

Attribute	Value							
BrowseName	MaintenanceType	MaintenanceType						
IsAbstract	False							
References	Node Class	Node Class BrowseName DataType TypeDefinition Other						
Subtype of the 2:Fu	Subtype of the 2:FunctionalGroupType defined in OPC 10000-100, i.e. inheriting the InstanceDeclarations of that Node							
0:HasComponent	Variable	RealTimeSinceLastService	0:Double	0:BaseAnalogType	M, RO			
0:HasComponent	Variable	RealTimeToNextService	0:Double	0:BaseAnalogType	M, RO			

The InstanceDeclarations of the MaintenanceType have additional Attributes defined in Table 94.

Table 94 – MaintenanceType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
RealTimeSinceLastService		Real time passed since the sensor was last serviced.
RealTimeToNextService		Real time left until the sensor is scheduled for the next servicing.

7.45 OperationalType ObjectType Definition

The *OperationalType* provides *Variables* useful during normal operation, such as *Quantities* and states, and is formally defined in Table 95.

Attribute	Value							
BrowseName	OperationalType							
IsAbstract	False	False						
References	Node Class	Node Class BrowseName DataType TypeDefinition						
Subtype of the 2:Fu	nctionalGroupTy	pe defined in OPC 10000-100, i	i.e. inheriting the Instanc	eDeclarations of that Node.				
0:HasSubtype	ObjectType	AirnetOperationalType	Defined in 7.46					
0:HasSubtype	ObjectType	CompressorOperationalType	Defined in 7.47					
0:HasSubtype	ObjectType	ConverterOperationalType	Defined in 7.48					
0:HasSubtype	ObjectType	DrainOperationalType	Defined in 7.49					
0:HasSubtype	ObjectType	DryerOperationalType	Defined in 7.50					
0:HasSubtype	ObjectType	ValveOperationalType	Defined in 7.51					
0:HasComponent	Variable	HealthState	0:Enumeration	0:DataItemType	0, R0			
0:HasComponent	Variable	IntegratedState	0:Enumeration	0:DataItemType	0, R0			
0:HasComponent	Variable	OnOff	0:Boolean	0:TwoStateDiscreteType	0, R0			
0:HasComponent	Variable	OperatingState	0:Enumeration	0:DataItemType	0, R0			

Table 95 – OperationalType Definition

The optional *Variable* HealthState is used for *Airnets* and *Components* and describes whether the *Main Function* of a *Component* or the *Requirements* of an *Airnet* can be fulfilled. The states may be influenced by the events and condition instances in an Events FunctionalGroup. The concrete connection between an event or condition and the *Variable* HealthState is system and manufacturer specific and is not specified by this specification. Some subtypes of this OperationalType define more specific states and provide a more specific definition of this *Variable*.

The optional *Variable* IntegratedState is used for *Airnets* and *Components* and describes the degree of control over compressed air generation and/or treatment. Some subtypes of this OperationalType define more specific states and provide a more specific definition of this *Variable*.

The optional *Variable* OnOff describes whether a *Component* is switched on or switched off. Some subtypes of this OperationalType define more specific states and provide a more specific definition of this *Variable*.

The optional *Variable* OperatingState is used for *Airnets* and *Components* and describes whether the *Main Function* of a *Component* or the *Requirements* of an *Airnet* should be fulfilled. Some subtypes of this OperationalType define more specific states and provide a more specific definition of this *Variable*.

When instantiating this OperationalType, the abstract DataType 0:Enumeration for HealthState, IntegratedState, and OperatingState shall be changed to a *CASPart* specific concrete DataType or one of the general DataTypes HealthStateEnum, IntegratedStateEnum, OperatingStateEnum.

The InstanceDeclarations of the OperationalType have additional Attributes defined in Table 96.

Source Path	Value Attribute	Description Attribute
HealthState		Actual health state of the part.
IntegratedState		Actual integrated state of the part.
OnOff		Actual OnOff state of the component.
OnOff 0:FalseState	"The component is switched off and not able to operate."	
OnOff 0:TrueState	"The component is switched on and is in a specific operating state."	
OperatingState		Actual operating state of the part.

Table 96 – OperationalType Attribute values for child Nodes

7.46 AirnetOperationalType ObjectType Definition

The *AirnetOperationalType* extends its supertype by *Airnet* specific *Variables* and is formally defined in Table 97.

Attribute	Value						
BrowseName	AirnetOperationalType						
IsAbstract	False	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of the Ope	erationalType de	fined in 7.45, i.e. inheriting the Ir	stanceDeclarations of that Noc	le.			
0:HasComponent	Variable	AirDeliveryRate	0:Double	0:BaseAnalogType	0, R0		
0:HasComponent	Variable	CompressorsIntegrated	0:UInt16	0:BaseAnalogType	0, R0		
0:HasComponent	Variable	CompressorsIsolated	0:UInt16	0:BaseAnalogType	0, R0		
0:HasComponent	Variable	CompressorsNotAvailable	0:UInt16	0:BaseAnalogType	0, R0		
0:HasComponent	Variable	ControlPressure	0:Double	0:BaseAnalogType	0, R0		
0:HasComponent	Variable	SpecificEnergy	0:Double	0:BaseAnalogType	0, R0		
0:HasComponent	Variable	SpecificEnergyCost	0:Double	0:BaseAnalogType	0, R0		
0:HasComponent	Variable	VolumeFlowRateAvailable	0:Double	0:BaseAnalogType	O, RO		
0:HasComponent	Variable	VolumeFlowRateUnavailable	0:Double	0:BaseAnalogType	0, R0		
The following nodes override nodes added by the OperationalType							
0:HasComponent	Variable	HealthState	AirnetHealthStateEnum	0:DataItemType	0, R0		
0:HasComponent	Variable	IntegratedState	AirnetIntegratedStateEnum	0:DataItemType	0, R0		
0:HasComponent	Variable	OperatingState	AirnetOperatingStateEnum	0:DataItemType	0, R0		

Table 97 – AirnetOperationalType Definition

Three KPIs were defined for an *Airnet*. Each of these KPIs is derived from ISO 11011 and is described below. The KPIs do not have to be calculated by the OPC UA *Server* but may be calculated by the *Main Control System*. The definition of the KPIs is intentionally flexible so that the KPIs can be adapted to the respective system. The integrator of a KPI shall provide a detailed description via the Definition *Property*. For the description it is important to define system boundaries and which *Components* of an *Airnet* are included in the calculation. The EngineeringUnits *Property* shall be used to specify the used quantities in calculating the KPI, e.g., " \in /m³" as possible unit for SpecificEnergyCost.

In practice, the values of and calculations attached to the following KPIs are vendor and system specific and may not be used to compare systems from different manufacturers, or different systems from one manufacturer unless stated otherwise in the Definition *Property*.

The optional *Variable* AirDeliveryRate indicates how much compressed air is generated in a specified time frame. Usually, the AirDeliveryRate uses the denominator 1 hour. There can be multiple KPIs of this kind for different time frames, e.g., Volume per day (24 hours), week (7 days), year (52 weeks). The value is calculated according to the following formula:

$$\frac{Volume}{RunningHours} = Air Delivery Rate \left[\frac{Volume}{Time}\right]$$

The optional *Variable* SpecificEnergy indicates how much electrical energy is consumed in the generation of a specific volume of compressed air. Usually, the SpecificEnergy uses the denominator 1 m³ or 1 l. The value is calculated according to the following formula:

$$\frac{Energy}{Volume} = Specific Energy \left[\frac{Energy}{Volume} \right]$$

The optional *Variable* SpecificEnergyCost indicates what the generation of a specific volume of compressed air costs. Usually, the SpecificEnergyCost uses the denominator 1 m³ or 1 l. The value is calculated according to the following formula:

$$\frac{Energy \ Cost}{Volume} = Specific \ Energy \ Cost} \left[\frac{Currency}{Volume}\right]$$

The optional Variable HealthState describes if the Requirements of an Airnet can be fulfilled.

The optional *Variable* IntegratedState describes the degree of control over the compressors for compressed air generation.

The optional Variable OperatingState describes if the Requirements of an Airnet should be fulfilled.

The Variable OnOff of the OperationalType should not be used for an instance of this AirnetOperationalType.

The InstanceDeclarations of the AirnetOperationalType have additional Attributes defined in Table 98.

Table 98 – AirnetOperationalType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute		
AirDeliveryRate		Volume of generated compressed air per time frame.		
CompressorsIntegrated		Number of integrated compressors in the airnet.		
CompressorsIsolated		Number of isolated compressors in the airnet.		
CompressorsNotAvailable		Number of unavailable compressors in the airnet.		
ControlPressure		Current pressure in the airnet.		
HealthState		Actual health state of the airnet.		
IntegratedState		Actual integrated state of the airnet.		
OperatingState		Actual operating state of the airnet.		
SpecificEnergy		Electrical energy consumed in the generation of a volume of compressed		
		air.		
SpecificEnergyCost		Costs for generating a volume of compressed air.		
VolumeFlowRateAvailable	neFlowRateAvailable Measured or calculated available volume flow rate of the process			
		the airnet.		
VolumeFlowRateUnavailable		Calculated unavailable volume flow rate of the process fluid in the airnet.		

7.47 CompressorOperationalType ObjectType Definition

The *CompressorOperationalType* extends its supertype by compressor specific *Variables* and is formally defined in Table 99.

Attribute	Value							
BrowseName	CompressorO	CompressorOperationalType						
IsAbstract	False							
References	Node Class	Node Class BrowseName DataType TypeDefinition Other						
Subtype of the Ope	<i>rationalType</i> defi	ned in 7.45, i.e. inheriting the Ins	stanceDeclarations of that	Node.				
0:HasComponent	Variable	ActivePressureBand	0:UInt16	0:DataItemType	O, RO			
0:HasComponent	Variable	FlowRateRatio	0:Double	0:BaseAnalogType	O, RO			
0:HasComponent	Variable	IsentropicEfficiency	0:Double	0:BaseAnalogType	O, RO			
0:HasComponent	Variable	SpecificEnergyRequirement	0:Double	0:BaseAnalogType	0, R0			
The following nodes override nodes added by the OperationalType								
0:HasComponent	Variable	OperatingState	CompressorOperating StateEnum	0:DataItemType	O, RO			

Table 99 – CompressorOperationalType Definition

The following illustration of a state machine does not imply the actual function or state machine for a compressor. It serves as an example of how the actual state machines may function.

Figure 32 – CompressorOperationalType State Machine Illustration

The InstanceDeclarations of the CompressorOperationalType have additional Attributes defined in Table 100.

Table 100 – CompressorOperationalType Attribute values for child Nodes	Table 100 -	CompressorO	perationalType	Attribute valu	les for child Nodes
--	-------------	-------------	----------------	----------------	---------------------

Source Path	Value Attribute	Description
ActivePressureBand		Indicates the actual active pressure band.
FlowRateRatio		Calculated ratio of actual and maximum possible flow rate of a
		compressor.
IsentropicEfficiency		Calculated isentropic efficiency.
OperatingState		Actual operating state of the compressor.
SpecificEnergyRequirement		Calculated shaft input energy per unit of compressor actual rate of flow.

7.48 ConverterOperationalType ObjectType Definition

The *ConverterOperationalType* extends its supertype by converter specific *Variables* and is formally defined in Table 101.

Table 101 – ConverterOperationalType Definit	ion
--	-----

Attribute	Value						
BrowseName	ConverterOpera	ConverterOperationalType					
IsAbstract	False	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of the OperationalType defined in 7.45, i.e. inheriting the InstanceDeclarations of that Node.							
0:HasComponent	Variable	CatalyticMaterialTemperature	0:Double	0:BaseAnalogType	0, R0		

The InstanceDeclarations of the ConverterOperationalType have additional Attributes defined in Table 102.

Source Path	Value Attribute	Description Attribute
CatalyticMaterialTemperature		Measured actual temperature of the catalytic material inside a converter.

7.49 DrainOperationalType ObjectType Definition

The *DrainOperationalType* provides extends its supertype by condensate drain specific *Variables* and is formally defined in Table 103.

Attribute	Value					
BrowseName	DrainOperatio	nalType				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the OperationalType defined in 7.45, i.e. inheriting the InstanceDeclarations of that Node.						
0:HasComponent	Method	DrainTest	See 7.49.1		0	

The InstanceDeclarations of the DrainOperationalType have additional Attributes defined in Table 104.

Table 104 – DrainOperationalType Attribute values for child Nodes

Source Path	Description Attribute
DrainTest	Invoke a drain test on a condensate drain.

7.49.1 DrainTest

The *Method* DrainTest is used to trigger a test of the condensate drain via the *Main Control System*. The signature of this *Method* is specified below. There are no *InputArguments* or *OutputArguments* defined. Its formal representation in the *AddressSpace* is defined in Table 105.

Signature

DrainTest (
);

Attribute	Value				
BrowseName	DrainTest				
References	Node Class	BrowseName	DataType	TypeDefinition	ModellingRule

7.50 DryerOperationalType ObjectType Definition

The *DryerOperationalType* extends its supertype by dryer specific *Variables* and is formally defined in Table 106.

Attribute	Value						
BrowseName	DryerOperationalType						
IsAbstract	False	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of the OperationalType defined in 7.45, i.e. inheriting the InstanceDeclarations of that Node.							
0:HasComponent	Variable	PressureDewPoint	0:Double	0:BaseAnalogType	0, R0		
The following nodes override nodes added by the OperationalType							
0:HasComponent	Variable	OnOff	0:Boolean	0:TwoStateDiscreteType	0, R0		
0:HasComponent	Variable	OperatingState	DryerOperatingStateEnum	0:DataItemType	O, RO		

Table 106 –	DryerOperationalType Definition	
	Digeroperationalitype Demitteri	

The following illustrations of a state machines do not imply the actual function or state machines for dryers. It serves as an example of how the actual state machines may function.

Figure 33 – DryerOperationalType Adsorption Dryer State Machine Illustration

Figure 34 – DryerOperationalType Refrigerant Dryer State Machine Illustration

Figure 35 – DryerOperationalType Membrane Dryer State Machine Illustration

The InstanceDeclarations of the DryerOperationalType have additional Attributes defined in Table 107.

Source Path	Value Attribute	Description Attribute
OnOff		Actual OnOff state of the dryer. For membrane dryers this describes the state of the controller.
OnOff 0:FalseState	"The dryer is switched off."	
OnOff 0:TrueState	"The dryer is switched on."	
OperatingState		Actual operating state of the dryer.
PressureDewPoint		Measured or calculated actual pressure dew point of the process fluid at a dryer.

Table 107 – DryerOperationalType Attribute values for child Nodes

7.51 ValveOperationalType ObjectType Definition

The *ValveOperationalType* extends its supertype by valve specific *Variables* and is formally defined in Table 108.

Table 108 – ValveOperation	alType Definition
----------------------------	-------------------

Attribute	Value	Value			
BrowseName	ValveOperation	alType			
IsAbstract	False	False			
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the Operati	Subtype of the OperationalType defined in 7.45, i.e. inheriting the InstanceDeclarations of that Node.				
0:HasComponent	Variable	ContinuousPosition	0:Double	0:BaseAnalogType	O, RO
0:HasComponent	Variable	PortUsed	0:UInt16	0:DataItemType	O, RO

Continuous valves shall use the Variable ContinuousPosition and define the EngineeringUnits Property.

Switching valves shall use the Variable PortUsed and define the EngineeringUnits *Property* as well as the Definition *Property*.

The InstanceDeclarations of the ValveOperationalType have additional Attributes defined in Table 109.

Table 109 – ValveOperationalType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
ContinuousPosition		Actual valve stroke.
PortUsed		Actual port used.

7.52 StatisticsType ObjectType Definition

The *StatisticsType* provides *Variables* for statistics applications, such as counters, and is formally defined in Table 110.

Attribute	Value	Value				
BrowseName	StatisticsType	StatisticsType				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 2:Fun	ctionalGroupType	defined in OPC 10000-100, i.e. inl	heriting the Instand	eDeclarations of that No	de.	
0:HasSubtype	ObjectType	CompressorStatisticsType	Defined in 7.53			
0:HasInterface	ObjectType	3:IAggregateStatisticsType	Defined in OPC	10000-200		
0:HasComponent	Variable	RealTime	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	RealTimeToNextService	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	RunningTime	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	RunningTimeToNextService	0:Double	0:BaseAnalogType	O, RO	
Applied from 3:IAggre	egateStatisticsType	9				
0:HasProperty	Variable	3:ResetCondition	0:String	0:PropertyType	O, RO	
0:HasComponent	Method	3:ResetStatistics	See 3:IStatisticsType 0		0	
0:HasProperty	Variable	3:StartTime	0:DateTime	0:PropertyType	O, RO	

Table 110 – StatisticsType Definition

The *Variables* ResetCondition and StartTime, and the *Method* ResetStatistics are defined by the IAggregateStatisticsType and shall be used as defined by the Interface.

The InstanceDeclarations of the StatisticsType have additional Attributes defined in Table 111.

Table 111 – StatisticsType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
RealTime		Real time passed since last counter reset.
RealTimeToNextService		Real time left until the real time of the next service level is exceeded.
RunningTime		Time spent running since last counter reset.
RunningTimeToNextService		Running time left until the running time of the next service level is exceeded.

7.53 CompressorStatisticsType ObjectType Definition

The *CompressorStatisticsType* extends its supertype by compressor specific *Variables* and is formally defined in Table 112.

Attribute	Value	Value				
BrowseName	CompressorSta	CompressorStatisticsType				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the StatisticsType defined in 7.52, i.e. inheriting the InstanceDeclarations of that Node.						
0:HasComponent	Variable	LoadedTime	0:Double	0:BaseAnalogType	O, RO	
0:HasComponent	Variable	UnloadedTime	0:Double	0:BaseAnalogType	O, RO	

Table 112 – CompressorStatisticsType Definition

The InstanceDeclarations of the CompressorStatisticsType have additional Attributes defined in Table 113.

Table 113 – CompressorStatisticsType Attribute values for child Nodes

Source Path	Value Attribute	Description Attribute
LoadedTime		Time spent in loaded state since last counter reset.
UnloadedTime		Time spent in unloaded state since last counter reset.

8 OPC UA DataTypes

8.1 FilterClassDataType

This structure *FilterClassDataType* contains information about the used filter class according to ISO 8573-1 of a filter. The structure is defined in Table 114.

Name	Туре	Description
FilterClassDataType	structure	Filter class according to ISO 8573-1.
A	FilterClassEnum	Class for particles
В	FilterClassEnum	Class for water and humidity
С	FilterClassEnum	Class for oil

Table 114 – FilterClassDataType Structure

The FilterClassDataType representation in the *AddressSpace* is defined in Table 115.

Table 115 – FilterClassDataType Definition

Attribute	Value	Value			
BrowseName	FilterClassDataTy	FilterClassDataType			
IsAbstract	False	False			
References	NodeClass	BrowseName	DataType	TypeDefinition	Other
Subtype of 0:Structure defined in OPC 10000-5.					

8.2 SensorTechnologyOptionSet

The *SensorTechnologyOptionSet* defines flags for the used sensor technologies for a sensor and is formally defined in Table 116.

Table 116 – SensorTechnologyOptionSet Values

Value	Bit No.	Description
CapacitiveSensor	0	Capacitive sensor capabilities
ElectronTube	1	Electron tube capabilities
InductiveSensor	2	Inductive sensor capabilities
IonizationSensor	3	Ionization sensor capabilities
Magnetometer	4	Magnetometer capabilities
OpticalSensor	5	Optical sensor capabilities
PiezoelectricSensor	6	Piezoelectric sensor capabilities
ResistiveSensor	7	Resistive sensor capabilities
ResonantSensor	8	Resonant sensor capabilities
TemperatureSensor	9	Temperature sensor capabilities
ThermalSensor	10	Thermal sensor capabilities
UltrasoundSensor	11	Ultrasound sensor capabilities

The SensorTechnologyOptionSet representation in the AddressSpace is defined in Table 117.

Table 117 – SensorTechnologyOptionSet Definition

Attribute	Value						
BrowseName	SensorTechnolo	SensorTechnologyOptionSet					
IsAbstract	False	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of OptionSet DataType defined in 5.							
0:HasProperty	Variable	OptionSetValues	0:LocalizedText[]	0:PropertyType	M, RO		

8.3 CompressorTypeEnum

This enumeration *CompressorTypeEnum* contains predefined possible compressor types. The enumeration is defined in Table 118.

Name	Value	Description
Other	0	Not specified in this enumeration
AxialTurboCompressor	1	Axial Turbo compressor
BellowsCompressor	2	Bellows compressor
DiaphragmCompressor	3	Diaphragm compressor
LiquidRingCompressor	4	Liquid ring compressor
PistonCompressor	5	Piston compressor
RadialTurboCompressor	6	Radial Turbo compressor
RootsCompressor	7	Roots compressor
ScrewCompressor	8	Screw compressor
ScrollCompressor	9	Scroll compressor
SideChannelCompressor	10	Side channel compressor
StraightLobeCompressor	11	Straight lobe compressor
VaneCompressor	12	Vane compressor

Table 118 – CompressorTypeEnum Items

The CompressorTypeEnum representation in the *AddressSpace* is defined in Table 119.

Table 119 – CompressorTypeEnum Definition

Attribute	Value					
BrowseName	CompressorTy	CompressorTypeEnum				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Enumeration type defined in OPC 10000-5.						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType		

8.4 ConverterTypeEnum

This enumeration *ConverterTypeEnum* contains predefined possible converter types. The enumeration is defined in Table 120.

Table 120 – ConverterTypeEnum Items

Name	Value	Description
Other	0	Not specified in this enumeration
CatalyticHCConverter	1	Catalytic hydrocarbons converter

The ConverterTypeEnum representation in the *AddressSpace* is defined in Table 121.

Table 121 – ConverterTypeEnum Definition

Attribute	Value					
BrowseName	ConverterType	ConverterTypeEnum				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Enumeration type defined in OPC 10000-5.						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType		

8.5 DisplacementTypeEnum

This enumeration *DisplacementTypeEnum* contains predefined possible displacement types for a compressor. The enumeration is defined in Table 122.

Name	Value	Description
PositiveDisplacement	0	Positive displacement compressor
DynamicDisplacement	1	Dynamic displacement compressor

The DisplacementTypeEnum representation in the *AddressSpace* is defined in Table 123.

Table 123 – DisplacementTypeEnum Definition

Attribute	Value					
BrowseName	Displacement ⁻	DisplacementTypeEnum				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Enumeration type defined in OPC 10000-5.						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType		

8.6 DrainTypeEnum

This enumeration *DrainTypeEnum* contains predefined possible condensate drain types. The enumeration is defined in Table 124.

Table 124 – DrainTypeEnum Items

Name	Value	Description
Other	0	Not specified in this enumeration
CapacitiveDrain	1	Capacitive drain
LevelControlledDrain	2	Level controlled drain
TimedDrain	3	Timed drain

The DrainTypeEnum representation in the AddressSpace is defined in Table 125.

Table 125 – DrainTypeEnum Definition

Attribute	Value						
BrowseName	DrainTypeEnu	DrainTypeEnum					
IsAbstract	False	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of the 0:Enumeration type defined in OPC 10000-5.							
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType			

8.7 DryerTypeEnum

This enumeration *DryerTypeEnum* contains predefined possible dryer types. The enumeration is defined in Table 126.

Name	Value	Description
Other	0	Not specified in this enumeration
AbsorptionDryer	1	Absorption dryer
AdsorptionDryer	2	Adsorption dryer
MembraneDryer	3	Membrane dryer
RefrigerationDryer	4	Refrigeration dryer

Table 126 – DryerTypeEnum Items

The DryerTypeEnum representation in the *AddressSpace* is defined in Table 127.

Table 127 – Dr	yerTypeEnum	Definition
----------------	-------------	------------

Attribute	Value	Value						
BrowseName	DryerTypeEnu	DryerTypeEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the 0:Enumeration type defined in OPC 10000-5.								
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

8.8 FilterClassEnum

This enumeration *FilterClassEnum* contains the possible filter classes according to ISO 8573-1 for the *FilterClassDataType*. The enumeration is defined in Table 128.

Table 128 –	FilterClassEnum	Items

Name	Value	Description
0	0	As specified by the equipment user or supplier and more stringent than class 1.
1	1	Particles: By Particle Size: 0.1 μm < d ≤ 0.5 μm: ≤ 20,000; 0.5 μ m< d ≤ 1.0 μm: ≤ 400; 1.0 μm < d ≤ 5.0 μm: ≤ 10; Water: Vapor Pressure Dewpoint: ≤ -70 °C, ≤ -94 °F;
		Oil: Liquid, Aerosol, & Vapor: $\leq 0.01 \text{ mg/m}^3$;
2	2	Particles: By Particle Size: 0.1 µm < d ≤ 0.5 µm: ≤ 400,000; 0.5 µ m< d ≤ 1.0 µm: ≤ 6,000; 1.0 µm < d ≤ 5.0 µm: ≤ 100;
		Water: Vapor Pressure Dewpoint: ≤ -40 °C, ≤ -40 °F; Oil: Liquid, Aerosol, & Vapor: ≤ 0.1 mg/m³;
3	3	Particles: By Particle Size: $0.5 \mu \text{ m} < d \le 1.0 \mu\text{m} : \le 90,000$; $1.0 \mu\text{m} < d \le 5.0 \mu\text{m} : \le 1,000$; Water: Vapor Pressure Dewpoint: $\le -20 \text{ °C}$, $\le -4 \text{ °F}$; Oil: Liquid, Aerosol, & Vapor: $\le 1 \text{ mg/m}^3$;
4	4	Particles: By Particle Size: $1.0 \ \mu m < d \le 5.0 \ \mu m: \le 10,000;$ Water: Vapor Pressure Dewpoint: $\le +3 \ ^{\circ}C, \le +37 \ ^{\circ}F;$ Oil: Liquid, Aerosol, & Vapor: $\le 5 \ mg/m^{3};$
5	5	Particles: By Particle Size: $1.0 \ \mu m < d \le 5.0 \ \mu m : \le 100,000;$ Water: Vapor Pressure Dewpoint: $\le +7 \ ^{\circ}C, \le +45 \ ^{\circ}F;$
6	6	Particles: By Mass: $0 - \le 5 \text{ mg/m}^3$; Water: Vapor Pressure Dewpoint: $\le +10 \text{ °C}$, $\le +50 \text{ °F}$;
7	7	Particles: By Mass: $5 - \le 10 \text{ mg/m}^3$; Water: Liquid: $\le 0.5 \text{ g/m}^3$;
8	8	Water: Liquid: ≤ 5 g/m³;
9	9	Water: Liquid: ≤ 10 g/m³;
X	10	Particles: By Mass: > 10 mg/m³; Water: Liquid: > 10 g/m³; Oil: Liquid, Aerosol, & Vapor: > 5 mg/m³;

The FilterClassEnum representation in the AddressSpace is defined in Table 129.

Attribute	Value	Value						
BrowseName	FilterClassEnu	FilterClassEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the 0:Enumeration type defined in OPC 10000-5.								
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

Table 129 – FilterClassEnum Definition

8.9 FilterTypeEnum

This enumeration *FilterTypeEnum* contains predefined possible filter types. The enumeration is defined in Table 130.

Table 130 -	FilterTypeEnum Items
-------------	----------------------

Name	Value	Description
Other	0	Not specified in this enumeration
ActivatedCarbonFilter	1	Activated carbon filter
AdsorptionFilter	2	Adsorption filter
CoalescingFilter	3	Coalescing filter
ParticulateFilter	4	Particulate filter
FabricFilter	5	Fabric filter
SterileFilter	6	Sterile filter

The FilterTypeEnum representation in the *AddressSpace* is defined in Table 131.

Table 131 – FilterTypeEnum Definition

Attribute	Value							
BrowseName	FilterTypeEnu	FilterTypeEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the 0:Enumeration type defined in OPC 10000-5.								
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

8.10 FluidTypeEnum

This enumeration *FluidTypeEnum* contains predefined possible process fluid types. The enumeration is defined in Table 132.

Table 132 – FluidTypeEnum Items

Name	Value	Description
Air	0	Air used as fluid
Condensate	1	Condensate used as fluid
Oil	2	Oil used as fluid
Water	3	Water used as fluid

The FluidTypeEnum representation in the AddressSpace is defined in Table 133.

Table 133 – FluidTypeEnum Definition

Attribute	Value	Value						
BrowseName	FluidTypeEnu	luidTypeEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the 0:Enumeration type defined in OPC 10000-5.								
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

8.11 HealthStateEnum

This enumeration *HealthStateEnum* contains possible states for the *Variable* HealthState of the OperationalType. The enumeration is defined in Table 134.

Name	Value	Description
ОК	0	The main function can be fulfilled.
Warning	1	Check required, possibly there is a problem that leads to an Error.
Error	2	Immediate action needed to avoid Critical.
Critical	3	The main function cannot be fulfilled.

Table 134 – HealthStateEnum Items

Its representation in the AddressSpace is defined in Table 135.

Table 135 – HealthStateEnum Definition

Attribute	Value							
BrowseName	HealthStateEn	HealthStateEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the Enumeration type defined in OPC 10000-5								
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

8.12 AirnetHealthStateEnum

This enumeration *AirnetHealthStateEnum* contains possible states for the *Variable* HealthState of the AirnetOperationalType. The enumeration is defined in Table 136.

Name	Value	Description
ОК	0	All requirements can be fulfilled.
Warning	1	Check required, possibly there is a problem that leads to an Error.
Error	2	Immediate action needed to avoid Critical.
Critical	3	At least one requirement cannot be fulfilled.

Its representation in the *AddressSpace* is defined in Table 137.

Table 137 – AirnetHealthStateEnum Definition

Attribute	Value							
BrowseName	AirnetHealthS	AirnetHealthStateEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the Enumeration type defined in OPC 10000-5								
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

8.13 IntegratedStateEnum

This enumeration *IntegratedStateEnum* contains possible states for the *Variable* IntegratedState of the OperationalType. The enumeration is defined in Table 138.

Name	Value	Description
FullyIntegrated	0	Compressed air generation or treatment is fully controlled by the MCS.
PartiallyIntegrated	1	Compressed air generation or treatment is partially controlled by the MCS.
FullyIsolated	2	Compressed air generation or treatment is not controlled by the MCS.

Table 138 – IntegratedStateEnum Items

Its representation in the AddressSpace is defined in Table 139.

Table 139 – IntegratedStateEnum Definition

Attribute	Value							
BrowseName	IntegratedStat	IntegratedStateEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the Enumera	Subtype of the Enumeration type defined in OPC 10000-5							
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

8.14 AirnetIntegratedStateEnum

This enumeration *AirnetIntegratedStateEnum* contains possible states for the *Variable* IntegratedState of the AirnetOperationalType. The enumeration is defined in Table 140.

Table 140 – AirnetIntegratedStateEnum Items	
---	--

Name	Value	Description
FullyIntegrated	0	The MCS controls all compressors of this airnet.
PartiallyIntegrated	1	At least one compressor of this airnet is not controlled by the MCS.
FullyIsolated	2	The MCS does not control any compressor of this airnet.

Its representation in the AddressSpace is defined in Table 141.

Table 141 – AirnetIntegratedStateEnum Definition

Attribute	Value							
BrowseName	AirnetIntegrate	AirnetIntegratedStateEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the Enumera	ation type define	d in OPC 10000-5						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

8.15 IpVersionEnum

This enumeration *IpVersionEnum* contains possible internet protocol versions. The enumeration is defined in Table 142.

Table 142 – IpVersionEnum Items

Name	Value	Description
IPv4	0	IP address is in IPv4 format
IPv6	1	IP address is in IPv6 format

Its representation in the AddressSpace is defined in Table 143.

Table 143 – IpVersionEnum Definition

Attribute	Value							
BrowseName	IpVersionEnur	pVersionEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the Enumera	tion type define	d in OPC 10000-5						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

8.16 LubricationTypeEnum

This enumeration LubricationTypeEnum contains predefined possible lubrication types for the compression process of a compressor. The enumeration is defined in Table 144.

Name	Value	Description
NoLubrication	0	No lubrication
OilLubricated	1	Oil lubricated
WaterLubricated	2	Water lubricated

Table 144 – LubricationTypeEnum Items

The LubricationTypeEnum representation in the AddressSpace is defined in Table 145.

Table 145 – LubricationTypeEnum Definition

Attribute	Value							
BrowseName	LubricationTy	LubricationTypeEnum						
IsAbstract	False	False						
References	Node Class	BrowseName	DataType	TypeDefinition	Other			
Subtype of the 0:Enum	<i>eration</i> type defir	ned in OPC 10000-5.						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType				

OperatingStateEnum 8.17

This enumeration OperatingStateEnum contains possible states for the Variable OperatingState of the OperationalType. The enumeration is defined in Table 146.

Name	Value	Description
Other	0	The component is in a state not specified by this enumeration.
Stopped	1	The main function shall not be fulfilled.
Starting	2	Transition phase to end in Operational state.
Stopping	3	Transition phase to end in Stopped state.
Operational	4	The main function should be fulfilled.

The following illustration of a state machine does not imply the actual function or state machine in the Main Control System. It serves as an example of how the actual state machine may function.

Figure 36 – OperatingState State Machine Illustration

Its representation in the *AddressSpace* is defined in Table 147.

Attribute	Value				
BrowseName	OperatingStateEnum				
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the Enumeration type defined in OPC 10000-5					
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType	

8.18 AirnetOperatingStateEnum

This enumeration *AirnetOperatingStateEnum* contains possible states for the *Variable* OperatingState of the AirnetOperationalType. The enumeration is defined in Table 148.

Name	Value	Description
Other	0	The airnet is in a state not specified by this enumeration.
Stopped	1	The requirements shall not be fulfilled.
Starting	2	Transition phase to end in Operational state.
Stopping	3	Transition phase to end in Stopped state.
Operational	4	The requirements should be fulfilled.

Table 148 – AirnetOperatingStateEnum Items

The following illustration of a state machine does not imply the actual function or state machine in the *Main Control System*. It serves as an example of how the actual state machine may function.

Figure 37 – AirnetOperatingState State Machine Illustration

Its representation in the AddressSpace is defined in Table 149.

Table 149 – AirnetOperatingStateEnum Definition

Attribute	Value				
BrowseName	AirnetOperatingStateEnum				
IsAbstract	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the Enumeration type defined in OPC 10000-5					
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType	

8.19 CompressorOperatingStateEnum

This enumeration *CompressorOperatingStateEnum* contains possible states for the *Variable* OperatingState of the CompressorOperationalType. The enumeration is defined in Table 150.

Name	Value	Description
Other	0	The compressor is in a state not specified by this enumeration.
Stopped	1	The motor is not running.
Starting	2	Transition phase to end in Unloaded state.
Stopping	3	Transition phase to end in Stopped state.
Unloaded	4	The motor is running but the compressor does not deliver compressed air to the airnet.
Loading	5	Transition phase to end in Loaded state.
Unloading	6	Transition phase to end in Unloaded state.
Loaded	7	The compressor does deliver compressed air to the airnet.

Table 150 – CompressorOperatingStateEnum Items

The following illustration of a state machine does not imply the actual function or state machine in the *Main Control System*. It serves as an example of how the actual state machine may function.

Its representation in the AddressSpace is defined in Table 151.

Table 151 – Comp	essorOperatingStateEnum Definition
------------------	------------------------------------

Attribute	Value				
BrowseName	CompressorO	CompressorOperatingStateEnum			
IsAbstract	False	False			
References	Node Class	BrowseName	DataType	TypeDefinition	Other
Subtype of the Enumeration type defined in OPC 10000-5					
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType	

8.20 DryerOperatingStateEnum

This enumeration *DryerOperatingStateEnum* contains possible states for the *Variable* OperatingState of the DryerOperationalType. The enumeration is defined in Table 152.

Name	Value	Description
Other	0	The dryer is in a state not specified by this enumeration.
Stopped	1	The dryer is stopped. This state is applicable to all adsorption dryers.
Running	2	The dryer is running. This state is applicable to all dryers.
RefrigerantCompressorStopped	3	The compressor of the refrigerant circuit is standing still, and the refrigerant dryer is operating using the stored cold. This state is applicable to refrigerant dryers.
RefrigerantCompressorRunning	4	The compressor of the refrigerant circuit is running and compressing refrigerant, creating cold. This state is applicable to refrigerant dryers.
PurgeValveClosed	5	Purge valve is closed, and no purge air is consumed, no purge of the humidity from membranes dryer. This state is applicable to membrane dryers.
PurgeValveOpen	6	Purge air can flow to purge the humidity out of the membrane dryer. This state is applicable to membrane dryers.
ParallelModeOfBothVessels	7	Both vessels of the adsorption dryer are used in parallel for adsorption. This state is applicable to all adsorption dryers.
Depressurizing	8	One vessel of the adsorption dryer is depressurized for regeneration. This state is applicable to heatless and heated adsorption dryers, not HOC.
Desorbing	9	One vessel of the adsorption dryer is in desorption phase, using purge or ambient air, heated or not heated. This state is applicable to all adsorption dryers.
Cooling	10	One vessel of the adsorption dryer is being cooled after being heated in the previous desorption phase. This state is applicable to heated adsorption dryers and HOC.
Pressurizing	11	The depressurized vessel is pressurized again. This state is applicable to heatless and heated adsorption dryers, not HOC.
RegeneratedVesselInStand-by	12	The regenerated vessel is in standby and ready for adsorption phase. This state is applicable to all adsorption dryers.

Table 152 – DryerOperatingStateEnum Items

The following illustrations of state machines do not imply the actual functions or state machines in the *Main Control System*. It serves as an example of how the actual state machines may function.

Figure 39 – DryerOperatingState Refrigerant Dryer State Machine Illustration

Purge valve closed	Purge valve open

Figure 40 – DryerOperatingState Membrane Dryer State Machine Illustration

Figure 41 – DryerOperatingState Adsorption Dryer State Machine Illustration

Its representation in the AddressSpace is defined in Table 153.

Attribute	Value					
BrowseName	DryerOperatin	DryerOperatingStateEnum				
IsAbstract	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the Enumeration type defined in OPC 10000-5						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType	e[] 0:PropertyType		

8.21 ReceiverTypeEnum

This enumeration *ReceiverTypeEnum* contains predefined possible receiver types. The enumeration is defined in Table 154.

Table 154 – ReceiverTypeEnum Items

Name	Value	Description
Other	0	Not specified in this enumeration
DryReceiver	1	Dry Receiver
WetReceiver	2	Wet Receiver

The ReceiverTypeEnum representation in the *AddressSpace* is defined in Table 155.

Table 155 – ReceiverTypeEnum Definition

Attribute	Value	Value					
BrowseName	ReceiverType	ReceiverTypeEnum					
IsAbstract	False	False					
References	Node Class	BrowseName	DataType	TypeDefinition	Other		
Subtype of the 0:Enumeration type defined in OPC 10000-5.							
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType			

8.22 SensorTypeEnum

This enumeration *SensorTypeEnum* contains predefined possible sensor types. The enumeration is defined in Table 156.

Name	Value	Description
Other	0	Not specified in this enumeration
Ammeter	1	Ammeter
DewPointSensor	2	Dew point sensor
FlowRateSensor	3	Flow rate sensor
FlowSpeedSensor	4	Flow speed sensor
HumiditySensor	5	Humidity sensor
OilConcentrationSensor	6	Oil concentration sensor
ParticleCounter	7	Particle counter
PressureSensor	8	Pressure sensor
TemperatureSensor	9	Temperature sensor
Voltmeter	10	Voltmeter
VolumeSensor	11	Volume sensor
Wattmeter	12	Wattmeter

The SensorTypeEnum representation in the AddressSpace is defined in Table 157.

Table 157 – SensorTypeEnum Definition

Attribute	Value					
BrowseName	SensorTypeEr	SensorTypeEnum				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Enumeration type defined in OPC 10000-5.						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType		

8.23 SeparatorTypeEnum

This enumeration *SeparatorTypeEnum* contains predefined possible condensate separator types. The enumeration is defined in Table 158.

	Table 158 -	- SeparatorTypeEnum Items	
--	-------------	---------------------------	--

Name	Value	Description	
Other	0	0 Not specified in this enumeration	
CentrifugalOilyWaterSeparator	1	Centrifugal oily water separator	
EmulsionSplittingSeparator	2	Emulsion splitting separator	
FlotationSeparator	3	Flotation separator	
GravityPlateSeparator	4	Gravity plate separator	
HydrocycloneOilyWaterSeparator	5	Hydrocyclone oily water separator	

The SeparatorTypeEnum representation in the *AddressSpace* is defined in Table 159.

Table 159 – SeparatorTypeEnum Definition

Attribute	Value					
BrowseName	SeparatorType	SeparatorTypeEnum				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Enumeration type defined in OPC 10000-5.						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType		

8.24 ValveTypeEnum

This enumeration *ValveTypeEnum* contains predefined possible valve types. The enumeration is defined in Table 160.

Name	Value	Description
Other	0	Not specified in this enumeration
CheckValve	1	Check valve
ContinuousValve	2	Continuous valve
FlowControlValve	3	Flow control valve
PressureValve	4	Pressure valve
SwitchingValve	5	Switching valve

Table 160 – ValveTypeEnum Items

The ValveTypeEnum representation in the *AddressSpace* is defined in Table 161.

Table 161 – ValveTypeEnum Definition

Attribute	Value					
BrowseName	ValveTypeEnu	/alveTypeEnum				
IsAbstract	False	False				
References	Node Class	BrowseName	DataType	TypeDefinition	Other	
Subtype of the 0:Enumeration type defined in OPC 10000-5.						
0:HasProperty	Variable	0:EnumValues	0:EnumValueType[]	0:PropertyType		

9 **Profiles and ConformanceUnits**

Profiles, Facets, and Conformance Units were designed for the MCS and its OPC UA Server, and do not apply to the whole CAS. If a Component does not provide the required information for a specific Conformance Unit or does not communicate with the MCS, and the information is not available by other means, the Conformance Unit cannot be fulfilled for this Component but is considered as fulfilled in general.

9.1 Conformance Units

This chapter defines the corresponding *Conformance Units* for the OPC UA for Compressed Air Systems Information Model.

Category	Title	Description
Server	CAS Analyses - OutputFile	Results of analyses present in an instance of the AnalysesType can be provided in the AddressSpace via the Object OutputFile.
Server	CAS Analyses - Parameterizable	Instances of the MCSType or AirnetType have an instance of the AnalysesType and provide analyses that can be parameterized and called by the user to invoke an analysis on the MCS.
Server	CAS Analyses - Prefabricated	Instances of the MCSType or AirnetType have an instance of the AnalysesType and provide prefabricated analyses provided by the manufacturer or the MCS.
Server	CAS Analyses - Pre- parameterized	Instances of the MCSType or AirnetType have an instance of the AnalysesType and provide pre-parameterized analyses that can be called by the user to invoke an analysis on the MCS.
Server	CAS CASPart Identification	Instances of the AirnetType, MCSType, CASComponentType and its subtypes have the FunctionalGroup Identification.
Server	CAS CASType Identification	Instances of the CASType have the FunctionalGroup Identification.
Server	CAS CASType Mandatory Nodes	All nodes declared as mandatory in the CASType are available in the AddressSpace.
Server	CAS Configuration - Communication Settings	Instances of the MCSType have an instance of the CommunicationSettingsType.
Server	CAS Configuration - ComponentClass	Instances of the CASComponentType and its subtypes have an instance of the DesignType or one of its subtypes and use the ComponentClass Variable.
Server	CAS Configuration - Load	Instances of the MCSType have the ConfigurationFile and the LoadConfigurationFile method and the user can upload a configuration file to the AddressSpace and the MCS.
Server	CAS Configuration - Save	Instances of the MCSType have the ConfigurationFile and the SaveConfigurationFile method and the user can download a configuration file from the AddressSpace and the MCS.
Server	CAS Dynamic - Add/Remove	The Services AddNodes and DeleteNodes are integrated by the server.
Server	CAS Dynamic - Move	The Services AddReferences and DeleteReferences are integrated by the server.
Server	CAS Energy Management - Electrical Quantities	Instances of the CompressorType and its subtypes have the Variables Power and Energy.
Server	CAS Energy Management - Process Fluid Quantities	Instances of the CompressorType and its subtypes have an instance of the FluidCircuitType and the Variable VolumeFlowRate for its components' Object ProcessFluidCircuit.
Server	CAS Energy Management - Quantity Historization	Variables used for Energy Management have the Attribute Historizing set true and the AccessLevel includes HistoryRead. Depending on the supported Conformance Units, these Variables are Energy and Power, VolumeFlowRate, or RunningTime and LoadedTime.
Server	CAS Energy Management - Runtime Quantities	Instances of the CompressorType and its subtypes have the Variables RunningTime and LoadedTime.
Server	CAS Events	Instances of the CASComponentType and its subtypes have an instance of the EventsType. Predefined Events shall have a severity assigned as specified in 6.6.1.
Server	CAS Events - Historization	Events in the AddressSpace have the Attribute Historizing set true and the AccessLevel includes HistoryRead.
Server	CAS Historization	All Quantities as specified in this specification have the Attribute Historizing set true and the AccessLevel includes HistoryRead.
Server	CAS Maintenance - HealthState	Instances of the AirnetType and the CASComponentType and its subtypes have the Variable HealthState.
Server	CAS Maintenance - MCS to Server	If a condition is acknowledged or confirmed on the MCS user interface, the condition is also acknowledged or confirmed on the OPC UA Server.
Server	CAS Maintenance - Sensor	Instances of the SensorType have an instance of the CalibrationType and/or the MaintenanceType.
Server	CAS Maintenance - Server to MCS	If a condition is acknowledged or confirmed on the OPC UA Server, the condition is also acknowledged or confirmed on the MCS user interface.
Server	CAS Maintenance - Statistics	Instances of the CASComponentType and its subtypes have an instance of the StatisticsType or its subtypes and the Variables RunningTime and/or RealTime.

Table 162 – Conformance Units for OPC UA for Compressed Air Systems

Category	Title	Description
Server	CAS NE107	Instances of the CASComponentType or one of its subtypes have at least one appropriate
		GeneratesEvent reference targeting the subtypes of the
		2:DeviceHealthDiagnosticAlarmType.
Server	CAS Operation -	Instances of the CASComponentType and its subtypes have an instance of the
	CoolantCircuit	FluidCircuitType as Object CoolantCircuit if the physical component uses a coolant.
Server	CAS Operation -	Instances of the AirnetType and the CASComponentType and its subtypes have an
	ElectricalCircuit	instance of the ElectricalCircuitType if the physical component has electrical properties.
Server	CAS Operation - FluidType	Instances of the AirnetType and the CASComponentType and its subtypes have an
		instance of the FluidCircuitType and the Variable FluidType if the physical component
		handles a fluid.
Server	CAS Operation -	Instances of the CompressorType and its subtypes have the Variable IntegratedState.
	IntegratedState	
Server	CAS Operation -	Instances of the AirnetType and the CASComponentType and its subtypes have the
	OperatingState	Variable OperatingState.
Server	CAS Operation -	Instances of the AirnetType and the CASComponentType and its subtypes have an
	ProcessFluidCircuit	instance of the FluidCircuitType as Object ProcessFluidCircuit if the physical component
		handles the process fluid.
Server	CAS Operation - Statistics	Instances of the CASComponentType and its subtypes have an instance of the
		StatisticsType.
Client	CAS Client Dynamic -	The Services AddNodes and DeleteNodes are available to the client.
	Add/Remove	
Client	CAS Client Dynamic -	The Services AddReferences and DeleteReferences are integrated to the client.
	Move	

9.2 Facets and Profiles

9.2.1 Overview

Table 163 lists all Facets and Profiles defined in this document and defines their URIs.

Table 163 – Facet and Profile URIs for OPC UA for Compressed Air Systems

Profile	URI
CAS Base Server Profile	http://opcfoundation.org/UA-Profile/CAS/Server/Base
CAS Advanced Server Profile	http://opcfoundation.org/UA-Profile/CAS/Server/Advanced
CAS Maintenance Management Server Profile	http://opcfoundation.org/UA-Profile/CAS/Server/Maintenance
CAS Energy Management Server Profile	http://opcfoundation.org/UA-Profile/CAS/Server/Energy
CAS Dynamic Server Profile	http://opcfoundation.org/UA-Profile/CAS/Server/Dynamic
CAS Full Server Profile	http://opcfoundation.org/UA-Profile/CAS/Server/Full
CAS Base Client Profile	http://opcfoundation.org/UA-Profile/CAS/Client/Base
CAS Advanced Client Profile	http://opcfoundation.org/UA-Profile/CAS/Client/Advanced
CAS Dynamic Client Profile	http://opcfoundation.org/UA-Profile/CAS/Client/Dynamic
CAS Base Analyses Server Facet	http://opcfoundation.org/UA-Profile/CAS/Server/Analyses
CAS Advanced Analyses Server Facet	http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedAnalyses
CAS Base Configuration Server Facet	http://opcfoundation.org/UA-Profile/CAS/Server/Configuration
CAS Advanced Configuration Server Facet	http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedConfiguration
CAS Base Maintenance Management Server Facet	http://opcfoundation.org/UA-Profile/CAS/Server/BaseMaintenance
CAS Advanced Maintenance Management Server Facet	http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedMaintenance
CAS Energy Management Server Facet	http://opcfoundation.org/UA-Profile/CAS/Server/BaseEnergy
CAS Operation Server Facet	http://opcfoundation.org/UA-Profile/CAS/Server/Operation

9.2.2 Server

9.2.2.1 Overview

The following sections define the *Facets* and *Profiles* available for *Servers* that implement the OPC UA for Compressed Air Systems companion specification.

9.2.2.2 CAS Base Analyses Server Facet

This *Facet* defines the elements for a *Main Control System* that provides prefabricated or pre-parameterized analyses on *Compressed Air System* or *Airnet* level. Although both Conformance Units are listed as optional, at least one shall be implemented to comply with this Facet.

Table 164 – CAS Base Analyses Server Facet

Group	Conformance Unit / Profile Title	M/O
CAS	CAS Analyses - Prefabricated	0
CAS	CAS Analyses - Pre-parameterized	0

9.2.2.3 CAS Advanced Analyses Server Facet

This *Facet* defines the elements for a *Main Control System* that provides parameterizable analyses on *Compressed Air System* or *Airnet* level and the possibility to store analysis reports in the AddressSpace.

Table 165 – CAS Advanced Analyses Server Facet

Group	Conformance Unit / Profile Title	M/O
CAS	CAS Analyses - Parameterizable	М
CAS	CAS Analyses - OutputFile	М

9.2.2.4 CAS Base Configuration Server Facet

This *Facet* defines the elements for a *Main Control System* that provides its OPC UA communication settings and the component class for *Components*.

Table 166 – CAS Base Configuration Server Facet

Group	Conformance Unit / Profile Title	M/O
CAS	CAS Configuration - Communication Settings	М
CAS	CAS Configuration - ComponentClass	М

9.2.2.5 CAS Advanced Configuration Server Facet

This *Facet* defines the elements for a *Main Control System* whose configuration can be stored as a file in the OPC UA *AddressSpace*.

Table 167 – CAS Advanced Configuration Server Facet

Group	Conformance Unit / Profile Title	M / O
CAS	CAS Configuration - Load	М
CAS	CAS Configuration - Save	М

9.2.2.6 CAS Base Maintenance Management Server Facet

This *Facet* defines the elements for a *Main Control System* that provides a health state and statistics for *CASParts*.

Table 168 – CAS Base Maintenance Management Serve	er Facet
---	----------

Group	Conformance Unit / Profile Title	M/O
CAS	CAS Maintenance - HealthState	М
CAS	CAS Maintenance - Statistics	М

9.2.2.7 CAS Advanced Maintenance Management Server Facet

This Facet defines the elements for a Main Control System that provides events and conditions.

Group	Conformance Unit / Profile Title	M/O
CAS	CAS Maintenance - MCS to Server	М
CAS	CAS Events	М

9.2.2.8 CAS Energy Management Server Facet

This *Facet* defines the elements for a *Main Control System* that provides necessary *Variables* and their historization for energy management applications.

Group	Conformance Unit / Profile Title	M/O
CAS	CAS Energy Management - Electrical Quantities	М
CAS	CAS Energy Management - Process Fluid Quantities	М
CAS	CAS Energy Management - Runtime Quantities	М
CAS	CAS Energy Management - Quantity Historization	М

Table 170 – CAS Energy Management Server Facet

9.2.2.9 CAS Operation Server Facet

This *Facet* defines the elements for a *Main Control System* that provides necessary *Variables* for operational applications.

Group	Conformance Unit / Profile Title	M / O
CAS	CAS Operation - IntegratedState	М
CAS	CAS Operation - OperatingState	M
CAS	CAS Operation - FluidType	M
CAS	CAS Operation - ProcessFluidCircuit	M
CAS	CAS Operation - ElectricalCircuit	M
CAS	CAS Operation - CoolantCircuit	M
CAS	CAS Operation - Statistics	M

Table 171 – CAS Operation Server Facet

9.2.2.10 CAS Base Server Profile

This *Profile* defines the elements for a *Main Control System* that supports base functionality.

Table 172 – CAS Base Server Profile

Group	Conformance Unit / Profile Title	M / O
Profile	0:Address Space Notifier Server Facet http://opcfoundation.org/UA-Profile/Server/AddressSpaceNotifier	М
Profile	0:Embedded 2017 UA Server Profile http://opcfoundation.org/UA-Profile/Server/EmbeddedUA2017	М
Profile	0:Data Access Server Facet http://opcfoundation.org/UA-Profile/Server/DataAccess	М
Profile	0:ComplexType 2017 Server Facet http://opcfoundation.org/UA-Profile/Server/ComplexTypes2017	М
Profile	4:Machine Identification Writable Server Facet http://opcfoundation.org/UA-Profile/Machinery/Server/MachineIdentificationWritable	М
CAS	Base Analyses Server Facet http://opcfoundation.org/UA-Profile/CAS/Server/Analyses	0
CAS	Base Configuration Server Facet http://opcfoundation.org/UA-Profile/CAS/Server/Configuration	М
CAS	Base Maintenance Management Server Facet http://opcfoundation.org/UA-Profile/CAS/Server/BaseMaintenance	М
CAS	Operation Server Facet http://opcfoundation.org/UA-Profile/CAS/Server/Operation	М
CAS	CASPart Identification	М
CAS	CASType Mandatory Nodes	М
CAS	CASType Identification	М
CAS	NE107	М

9.2.2.11 CAS Advanced Server Profile

This Profile defines the elements for a Main Control System that supports advanced functionality.

Table 173 – CAS Advanced Server Profile

Group	Conformance Unit / Profile Title	M/O
Profile	Base Server Profile	М
	http://opcfoundation.org/UA-Profile/CAS/Server/Base	
CAS	Advanced Configuration Server Facet	М
	http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedConfiguration	
CAS	Advanced Analyses Server Facet	М
	http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedAnalyses	

9.2.2.12 CAS Maintenance Management Server Profile

This *Profile* defines the elements for a *Main Control System* that supports the maintenance management use case.

Group	Conformance Unit / Profile Title	M/O
Profile	0:A & C Address Space Instance Server Facet http://opcfoundation.org/UA-Profile/Server/ACAddressSpaceInstance	М
Profile	0:A & C Exclusive Alarming Server Facet http://opcfoundation.org/UA-Profile/Server/ACExclusiveAlarming	М
Profile	0:Aggregate Subscription Server Facet http://opcfoundation.org/UA-Profile/Server/AggregateSubscription	М
Profile	3:IA Statistical Data Server Profile http://opcfoundation.org/UA-Profile/IA/Server/StatisticalData	М
Profile	Base Server Profile http://opcfoundation.org/UA-Profile/CAS/Server/Base	М
CAS	Advanced Maintenance Management Server Facet http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedMaintenance	М
CAS	Maintenance - Server to MCS	М
CAS	Maintenance - Sensor	0

Table 174 – CAS Maintenance Management Server Profile

9.2.2.13 CAS Energy Management Server Profile

This Profile defines the elements for a Main Control System that supports the energy management use case.

Table 175 – CAS Energy Management Server Profile

Group	Conformance Unit / Profile Title	M/O
Profile	Base Server Profile	М
	http://opcfoundation.org/UA-Profile/CAS/Server/Base	
CAS	Energy Management Server Facet	М
	http://opcfoundation.org/UA-Profile/CAS/Server/BaseEnergy	

9.2.2.14 CAS Dynamic Server Profile

This *Profile* defines the elements for a *Main Control System* that supports node manipulation during the runtime of the *Server*.

Group	Conformance Unit / Profile Title	M/O
Profile	0:Node Management Server Facet	М
	http://opcfoundation.org/UA-Profile/Server/NodeManagement	
Profile	Base Server Profile	M
	http://opcfoundation.org/UA-Profile/CAS/Server/Base	
CAS	Dynamic - Add/Remove	М
CAS	Dynamic - Move	М

Table 176 – CAS Dynamic Server Profile

9.2.2.15 CAS Full Server Profile

This Profile defines the elements for a Main Control System which supports all ConformanceUnits.

Group	Conformance Unit / Profile Title	M / O
Profile	Base Server Profile	М
	http://opcfoundation.org/UA-Profile/CAS/Server/Base	
CAS	Advanced Analyses Server Facet	М
	http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedAnalyses	
CAS	Advanced Configuration Server Facet	М
	http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedConfiguration	
CAS	Advanced Maintenance Management Server Facet	М
	http://opcfoundation.org/UA-Profile/CAS/Server/AdvancedMaintenance	
CAS	Energy Management Server Facet	М
	http://opcfoundation.org/UA-Profile/CAS/Server/BaseEnergy	
CAS	CAS Maintenance - Server to MCS	М
CAS	CAS Maintenance - Sensor	М
CAS	CAS Dynamic - Add/Remove	М
CAS	CAS Dynamic - Move	М

Table 177 – CAS Full Server Profile

9.2.3 Client

9.2.3.1 Overview

The following sections define the *Facets* and *Profiles* available for *Clients* that implement the OPC UA for Compressed Air Systems companion specification.

9.2.3.2 CAS Base Client Profile

This *Profile* defines the elements for a *Client* that can fully use a CAS Base Server Profile *Server*.

Table 178 – CAS Base Client Profile

Group	Conformance Unit / Profile Title	M / O
Profile	0:Standard UA Client 2017 Profile http://opcfoundation.org/UA-Profile/Client/Standard2017	М
Profile	0:File Access Client Facet http://opcfoundation.org/UA-Profile/Client/FileAccess	М
Profile	0:Attribute Read Client Facet http://opcfoundation.org/UA-Profile/Client/AttributeRead	М
Profile	0:Attribute Write Client Facet http://opcfoundation.org/UA-Profile/Client/AttributeWrite	М
Profile	0:DataAccess Client Facet http://opcfoundation.org/UA-Profile/Client/DataAccess	М
Profile	0:Aggregate Subscriber Client Facet http://opcfoundation.org/UA-Profile/Client/AggregateSubscription	М

9.2.3.3 CAS Advanced Client Profile

This *Profile* defines the elements for a *Client* that can fully use a CAS Advanced Server Profile, a CAS Maintenance Management Server Profile, and/or a CAS Energy Management Server Profile *Server*.

Group	Conformance Unit / Profile Title	M / O
Profile	Base Client Profile	М
	http://opcfoundation.org/UA-Profile/CAS/Client/Base	
Profile	0:A & C Address Space Instance Client Facet	М
	http://opcfoundation.org/UA-Profile/Client/ACAddressSpaceInstance	
Profile	0:A & C Exclusive Alarming Client Facet	М
	http://opcfoundation.org/UA-Profile/Client/ACExclusiveAlarming	
Profile	0:Historical Access Client Facet	М
	http://opcfoundation.org/UA-Profile/Client/HistoricalAccess	
Profile	0:Historical Event Client Facet	М
	http://opcfoundation.org/UA-Profile/Client/HistoricalEvents	

9.2.3.4 CAS Dynamic Client Profile

This Profile defines the elements for a Client that can fully use a CAS Dynamic Server Profile Server.

Table 180 – CAS)vnamic Client Pi	rofile
	ynanne onent i	Onic

Group	Conformance Unit / Profile Title	M/O
Profile	Base Client Profile	М
	http://opcfoundation.org/UA-Profile/CAS/Client/Base	
Profile	0:Node Management Client Facet	М
	http://opcfoundation.org/UA-Profile/Client/NodeManagement	
CAS	CAS Client Dynamic - Add/Remove	М
CAS	CAS Client Dynamic - Move	М

9.2.3.5 CAS Full Client Profile

This Profile defines the elements for a Client that can fully use every specified CAS Server.

Table 181 – CAS Dynamic Client Profile

Group	Conformance Unit / Profile Title	M/O
Profile	Advanced Client Profile	М
	http://opcfoundation.org/UA-Profile/CAS/Client/Advanced	
Profile	Dynamic Client Profile	М
	http://opcfoundation.org/UA-Profile/CAS/Client/Dynamic	

10 Namespaces

10.1 Namespace Metadata

Table 182 defines the namespace metadata for this document. The *Object* is used to provide version information for the namespace and an indication about static *Nodes*. Static *Nodes* are identical for all *Attributes* in all *Servers*, including the *Value Attribute*. See OPC 10000-5 for more details.

The information is provided as *Object* of type *NamespaceMetadataType*. This *Object* is a component of the *Namespaces Object* that is part of the *Server Object*. The *NamespaceMetadataType ObjectType* and its *Properties* are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file. The UANodeSet XML schema is defined in OPC 10000-6.

Attribute	Value	Value		
BrowseName	http://opc	cfoundation.org/UA/CAS/		
Property		DataType	Value	
NamespaceUri		String	http://opcfoundation.org/UA/CAS/	
NamespaceVersion		String	1.00.1	
NamespacePublicationDate		DateTime	2021-07-13	
IsNamespaceSubset		Boolean	False	
StaticNodeIdTypes		ldType []	0	
StaticNumericNodeIdRange		NumericRange []		
StaticStringNodeIdPattern		String		

Table 182 – NamespaceMetadata Object for this Document

10.2 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The *Attributes NodeId* and *BrowseName* are identifiers. A *Node* in the UA *AddressSpace* is unambiguously identified using a *NodeId*. Unlike *NodeIds*, the *BrowseName* cannot be used to unambiguously identify a *Node*. Different *Nodes* may have the same *BrowseName*. They are used to build a browse path between two *Nodes* or to define a standard *Property*.

Servers may often choose to use the same namespace for the *Nodeld* and the *BrowseName*. However, if they want to provide a standard *Property*, its *BrowseName* shall have the namespace of the standards body although the namespace of the *Nodeld* reflects something else, for example the *EngineeringUnits Property*. All *Nodelds* of *Nodes* not defined in this document shall not use the standard namespaces.

Table 183 provides a list of mandatory and optional namespaces used in an OPC UA for Compressed Air Systems OPC UA *Server*.

NamespaceURI	Description	Use
http://opcfoundation.org/UA/	Namespace for <i>Nodelds</i> and <i>BrowseNames</i> defined in the OPC UA specification. This namespace shall have namespace index 0.	Mandatory
Local Server URI	Namespace for nodes defined in the local server. This may include types and instances used in an AutoID Device represented by the Server. This namespace shall have namespace index 1.	Mandatory
http://opcfoundation.org/UA/DI/	Namespace for <i>Nodelds</i> and <i>BrowseNames</i> defined in OPC 10000- 100. The namespace index is <i>Server</i> specific.	Mandatory
http://opcfoundation.org/UA/IA/	Namespace for <i>Nodelds</i> and <i>BrowseNames</i> defined in OPC 10000-200. The namespace index is <i>Server</i> specific.	Mandatory
http://opcfoundation.org/UA/Machinery/	Namespace for <i>Nodelds</i> and <i>BrowseNames</i> defined in OPC 40001-1. The namespace index is <i>Server</i> specific.	Mandatory
http://opcfoundation.org/UA/CAS/	Namespace for <i>Nodelds</i> and <i>BrowseNames</i> defined in this document. The namespace index is <i>Server</i> specific.	Mandatory
Vendor specific types	A Server may provide vendor-specific types like types derived from <i>ObjectTypes</i> defined in this document in a vendor-specific namespace.	Optional
Vendor specific instances	A Server provides vendor-specific instances of the standard types or vendor-specific instances of vendor-specific types in a vendor- specific namespace. It is recommended to separate vendor specific types and vendor specific instances into two or more namespaces.	Mandatory

Table 183 – Namespaces used in a OPC UA for Compressed Air Systems Server

Table 184 provides a list of namespaces and their index used for *BrowseNames* in this document. The default namespace of this document is not listed since all *BrowseNames* without prefix use this default namespace.

NamespaceURI	Namespace Index	Example
http://opcfoundation.org/UA/	0	0:EngineeringUnits
http://opcfoundation.org/UA/DI/	2	2:DeviceRevision
http://opcfoundation.org/UA/IA/	3	3:BasicStacklightType
http://opcfoundation.org/UA/Machinery/	4	4:YearOfConstruction

Annex A (normative)

OPC UA for Compressed Air Systems Namespace and mappings

A.1 Namespace and identifiers for OPC UA for Compressed Air Systems Information Model

This appendix defines the numeric identifiers for all the numeric *Nodelds* defined in this specification. The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the *SymbolName* is either the *BrowseName* of a *Type Node* or the *BrowsePath* for an *Instance Node* that appears in the specification and the *Identifier* is the numeric value for the *NodeId*.

The *BrowsePath* for an *Instance Node* is constructed by appending the *BrowseName* of the instance *Node* to the *BrowseName* for the containing instance or type. An underscore character is used to separate each *BrowseName* in the path. Let's take for example, the CommunicationSettingsType *ObjectType Node* which has the Hostname *Property*. The Name for the Hostname *InstanceDeclaration* within the CommunicationSettingsType declaration is: CommunicationSettingsType_Hostname.

The NamespaceUri for all Nodelds defined here is http://opcfoundation.org/UA/CAS/

The CSV released with this version of the specification can be found here:

- http://www.opcfoundation.org/UA/schemas/CAS/1.0/Opc.Ua.CAS.Nodelds.csv
- NOTE The latest CSV that is compatible with this version of the specification can be found here:
 - http://www.opcfoundation.org/UA/schemas/CAS/Opc.Ua.CAS.Nodelds.csv

A computer processible version of the complete Information Model defined in this specification is also provided.

It follows the XML Information Model schema syntax defined in OPC 10000-6.

The Information Model Schema for this version of the document can be found here:

- http://www.opcfoundation.org/UA/schemas/CAS/1.0/Opc.Ua.CAS.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of the specification can be found here:

- http://www.opcfoundation.org/UA/schemas/CAS/Opc.Ua.CAS.NodeSet2.xml

Annex B (normative)

Edge Cases for Component and Airnet Handling

B.1 Adding or Removing a Component to/from a Compressed Air System

During the lifetime of a *Compressed Air System*, the manufacturer, integrator, or operator may wish to replace, add, or remove *Components* to or from the system. The OPC UA provided *Services* AddNodes and DeleteNodes can add or remove *Nodes* from the *AddressSpace* during runtime of the OPC UA *Server* and are described in OPC 10000-4. If the manufacturer of a *Compressed Air System* wants to enable an integrator or operator to add or remove *Components* while the OPC UA *Server* is running, at least those two *Services* shall be available to both the *Server* and the *Client*. To additionally support the edge case B.2, the whole NodeManagement Service Set, defined in OPC 10000-4 shall be supported by both the *Client* and *Server*.

If the used *Server* or *Client* does not support the *Services* AddNodes and RemoveNodes, the modelled *Compressed Air System* shall be changed while the OPC UA *Server* is not running. The OPC UA *Server* shall only boot up after the required mechanical work is done.

B.2 Adding or Removing a Component to/from an Airnet

During the life of a *Compressed Air System* the manufacturer, integrator, or operator may wish to add or remove *Components* to or from one of the *Airnets*. This also includes moving a *Component* permanently from one *Airnet* to another. The OPC UA provided *Services* AddReferences and DeleteReferences can add or remove *References* from Nodes in the *AddressSpace* during runtime of the OPC UA *Server* and are described in OPC 10000-4. If the manufacturer of a *Compressed Air System* wants to enable an integrator or operator to add or remove *Components* to or from one of the *Airnets*, or to move *Components* from one *Airnet* to another, while the OPC UA *Server* is running, at least those two *Services* shall be available to both the *Server* and the *Client*. To additionally support the edge case B.1, the whole NodeManagement Service Set, defined in OPC 10000-4 shall be supported by both the *Client* and *Server*.

If the used *Server* or *Client* does not support the *Services* AddReferences and DeleteReferences, the modelled *Compressed Air System* shall be changed while the OPC UA *Server* is not running. The OPC UA *Server* shall only boot up after the required mechanical work is done.

B.3 Temporarily Switch a Component from one Airnet to Another

Some *Main Control Systems* allow for *Components* to switch from one *Airnet* to another by operating a valve or a similar action. If the setup of a *Compressed Air System* allows for such a temporarily switch, the switchable *Components* shall have the ActiveAirnet *Property* and all possible *Airnets* shall have an Organizes *Reference* to these *Components*. If the operation of a valve or a similar action switches one of these *Components* from one *Airnet* to another, the ActiveAirnet *Property* changes its Value *Attribute* to indicate which *Airnet* is currently using the *Component*.

Annex C (informative)

Bibliography

[1] Plattform Industrie 4.0, *Details of the Asset Administration Shell*, Berlin: Federal Ministry for Economic Affairs and Energy (BMWi), 2019.